Please use this identifier to cite or link to this item:
標題: 圖案化陽極氧化鋁膜之藥物釋放應用
Applications of patterned Anodic Aluminum Oxide membranes on drug release
作者: 王英翔
Wang, Ying-Hsiang
關鍵字: AAO;陽極氧化鋁膜;drug delivery;photolithographic;藥物釋放;黃光微影製程
出版社: 機械工程學系所
引用: [1] J.R.K Reddy, M.V. Jyothsna, T. S.M Saleem, C.M. S. Chetty, “REVIEW ON: PULSATILE DRUG DELIVERY SYSTEMS,” Pharmaceutical Sciences and Research,109-115, (2009). [2] H.T. Wang, H. Palmer, R.J. Linhardt, D.R. Flanagan, E. Schemitt, “Degradation of poly(ester) microspheres”, Biomaterials, 11,679-685, (1990). [3] A.M. Reed, D.K. Gilding, “Biodegradable polymers for use in surgery -poly (glycolic)/poly(Iactic acid) homo and copolymers:2.In vitro degradation,”Polymer,494-498, (1981). [4] C.E. Holy, S.M. Dang, J.E. Davies, M.S. Shoichet, In vitro degradation of a novel poly (lactide-co-glycolide) 75/25 foam, Biomaterials ,1177-1185,(1999). [5] F. Thierry, V. A. Nicolas, “Low-energy nanoemulsification to design veterinary controlled drug delivery devices,” Nanomedicine:5 867-873,(2010). [6] M.S. Arayne, N. Sultana, “Review- porous nanoparticles in drug delivery systems,” Sciences and Research,158-169, (2006). [7] U.M. Zaida, G.R. Adriana, M.C.L. Maria, E.C.J.Juan, N.A M. Guadalupe, Q.G. David, “Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification diffusion method,”Nanomedicine :5 ,611-620, (2010) [8] H.J. Kang , D. J. Kim , S.J. Park , J.B. Yoo , Y.S. Ryu, “Controlled drug release using nanoporous anodic aluminum oxide on stent”,ScienceDirect,5184-5187, (2007).  [9] K. A. Snyder, “The relationship between the formation factor and the diffusioncoefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations”, Concrete Science and Engineering , 216-224, (2001). [10] N. Dixit, V. Bali, S. Baboota, A. Ahuja, J. Ali, “Iontophoresis - An Approach for Controlled Drug Delivery: A Review,” Bentham Science, 1-10, (2007). [11] R. Bellazzi, G. Nucci, C. Cobelli, “The Subcutaneous Route to Insulin-Dependent Diabetes Therapy,” IEEE, Engineering in Medicine and Biology Magazine, 54-64, (2001). [12] C.J. Kim, “A linear drug release from erosion-controlled drug/resin complex systems,” Journal of Applied Polymer Science, 54. 1179-1183, (1994). [13] F. Liu, A. W. Basit, “A paradigm shift in enteric coating: Achieving rapid release in the proximal small intestine of man,” Journal of Controlled Release, 242-245, (2010). [14] A. A. Barba, M.D. Amore, S. Chirico, G. Lamberti , G. Titomanlio, “Swelling of cellulose derivative (HPMC) matrix systems for drug delivery, “Carbohydrate Polymers, 469-474, (2009). [15] W. Ryu, Z. Huang, F. B. Prinz, S. B. Goodman, R. Fasching, “Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor,” Journal of Controlled Release, 98-105, (2007). [16] D. Besten, M. W. Heidy, D Garcia, R. Moezelaar, M.H. Zwietering, T. Abee, “Direct-Imaging-Based Quantification of Bacillus cereus ATCC 14579 Population Heterogeneity at a Low Incubation Temperature,” Microbiology,76,927-930, (2010).   [17] M. W. Heidy, D. Besten, J.C. Ingham, E. T. Johan, V. H. Vlieg, M. M. Beerthuyzen, M. H. Zwietering, T. Abee, “Quantitative Analysis of Population Heterogeneity of the Adaptive Salt Stress Response and Growth Capacity of Bacillus cereus ATCC 14579,” Microbiology,73,4797-4804, (2007). [18] L. Alice, D. Hertog, W. D. Visser, C. J. Ingham, F. H. A. G. Fey, P.R. Klatser, R. M. Anthony, “Simplified Automated Image Analysis for Detection and Phenotyping of Mycobacterium tuberculosis on Porous Supports by Monitoring Growing Microcolonies ,” Plos ONE,5,e11008(2010). [19] B. C. Ferrari, S. J. Binnerup, M. illings,”Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria,”Microbiology, 1,8714-8720(2005). [20] E.Gultepe, D.Nagesha, S.Sridhar, .Amiji,”Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices,”Adv Drug Deliv Revs,62,305-315(2010). [21] T.Kaeberlein, Lewis K, Epstein SS,”Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment, “science,96,1127-1129,(2002). [22] H.Wieneke, O. Dirsch, T.Sawitowski, Y.L. Gu, H. Brauer, U. Dahmen, A. Fischer, S.Wnendt, R.Erbel,” Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits,” Catheter Cardiovasc Interv,60,399-407, (2003). [23] % 90%E5%8A%A8 [24]''s%20motion .htm [25] D. Q. Li, “Electrophoretic motion of two spherical particles in a rectangular microchannel,” Microfluid Nanofluid, 1, 1,52-61,(2004). [26] D. Monk, “Controlled structure release for silicon surface micromachining,” Ph.D. thesis, University of California, Berkeley 164-180, (1993). [27] G. A. Bozhikov, G. D. Bontchev, P. I. Ivanov, A. N. Priemyshev, O. D. Maslov, M.V. Milanov, and S. N. Dmitriev,” DETERMINATION OF ION DIFFUSION COEFFICIENTS BY THE ELECTROMIGRATION METHOD,” J. of Radioanalytical and Nuclear Chemistry, 258,645, (2003). [28] T. Shedlovsky, A. S. Brown,” The Conductance at 25° of Lithium Chloride, Sodium and Potassium Bromides and Potassium Iodide in Methanol, and of Lithium Chloride, Sodium Bromide and Potassium Iodide in Water, D. AMacinnes,” Trans. Electrochem. Soc. 66,2855-2858,(1934). [29] A. Sagues, J. T. Wolan, A.D. Fex, T.J. Fawcett,” Impedance Behavior of Nanoporous SiC,” Electrochimica Acta ,51, 1656-1663,(2006). [30] C.L. Gardner, W. Nonner and R.S. Eisenberg,” Electrodiffusion model simulation of ionic channels: 1D simulations,” Journal of Computational Electronics, 3, 25-31, (2004).
本研究是利用陽極氧化鋁膜奈米多孔性及生物相容性,製作藥物釋放載具,目標為建立一簡單可調控的長效型藥物釋放系統。主要是以AAO為載體,先以黃光微影製程在AAO上製作微流道,為放置藥物的空間,去除光阻後進行藥物置放,再以具有生物可降解性的PLGA封裝,完成藥物釋放系統並進行藥物釋放測試。可降解實驗結果證實AAO具生物可降解性,孔徑90nm厚度60μm的AAO試片,可在pH 7.4的環境下使用18~20週,而不致產生結構破壞,故可做為長效釋放之應用。本研究分別以溶液電阻量測及擴散電流量測兩種方式,估算AAO之擴散係數。以溶液電阻量測法估算之擴散係數為1.44×10-9 m2/s,以擴散電流法計算之擴散係數為1.47×10-9 m2/s,兩者結果相當接近。擴散係數可用以估算載具之藥物釋放時間,估算結果得知約5.5個小時藥物會釋放其總量的50%,約40小時藥物會釋放完畢。實驗結果亦發現若AAO之厚度減少時,擴散係數增加,可推論擴散係數與孔洞長度成反比;實驗亦驗證擴散係數與載具之製程無關。

In this study, the porosity and bio-compatibility characteristics of anodic aluminum oxide (AAO) membranes are adopted for the fabrication of a long-term and controllable drug release device. The photolithographic technique is used to pattern a micro channel on the AAO substrate for the placing of desired drug. After installing the drug, the biodegradable material PLGA is used to seal the device.
Biodegradation test demonstrates that a 60μm thick AAO substrate with an averaged pore size of 90 nm can sustain for 20 weeks when it is immersed in a solution with a pH value of 7.4. The solution resistance method and the diffusion current method are employed for the measurement of the diffusion coefficient of an AAO substrate. The measured diffusion coefficients for the solution resistance method and the diffusion current method are 1.44×10-9 m2/s and 1.47×10-9 m2/s, respectively. The diffusion coefficient is then used for the estimation of the drug releasing time. It is found that the installed drug can release 50% of the original amount in 5.5 h. It takes 40 h to completely release the whole amount. Additional experiments show that the diffusion coefficient of an AAO membrane increases with the reducing of its thickness.
其他識別: U0005-2707201100395000
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.