Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1749
DC FieldValueLanguage
dc.contributor陳致真zh_TW
dc.contributorChih-Chen Chenen_US
dc.contributor林淑萍zh_TW
dc.contributorShu-Ping Linen_US
dc.contributor.advisor王國禎zh_TW
dc.contributor.advisorGou-Jen Wangen_US
dc.contributor.author王英翔zh_TW
dc.contributor.authorWang, Ying-Hsiangen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-05T11:41:33Z-
dc.date.available2014-06-05T11:41:33Z-
dc.identifierU0005-2707201100395000zh_TW
dc.identifier.citation[1] J.R.K Reddy, M.V. Jyothsna, T. S.M Saleem, C.M. S. Chetty, “REVIEW ON: PULSATILE DRUG DELIVERY SYSTEMS,” Pharmaceutical Sciences and Research,109-115, (2009). [2] H.T. Wang, H. Palmer, R.J. Linhardt, D.R. Flanagan, E. Schemitt, “Degradation of poly(ester) microspheres”, Biomaterials, 11,679-685, (1990). [3] A.M. Reed, D.K. Gilding, “Biodegradable polymers for use in surgery -poly (glycolic)/poly(Iactic acid) homo and copolymers:2.In vitro degradation,”Polymer,494-498, (1981). [4] C.E. Holy, S.M. Dang, J.E. Davies, M.S. Shoichet, In vitro degradation of a novel poly (lactide-co-glycolide) 75/25 foam, Biomaterials ,1177-1185,(1999). [5] F. Thierry, V. A. Nicolas, “Low-energy nanoemulsification to design veterinary controlled drug delivery devices,” Nanomedicine:5 867-873,(2010). [6] M.S. Arayne, N. Sultana, “Review- porous nanoparticles in drug delivery systems,” Sciences and Research,158-169, (2006). [7] U.M. Zaida, G.R. Adriana, M.C.L. Maria, E.C.J.Juan, N.A M. Guadalupe, Q.G. David, “Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification diffusion method,”Nanomedicine :5 ,611-620, (2010) [8] H.J. Kang , D. J. Kim , S.J. Park , J.B. Yoo , Y.S. Ryu, “Controlled drug release using nanoporous anodic aluminum oxide on stent”,ScienceDirect,5184-5187, (2007).  [9] K. A. Snyder, “The relationship between the formation factor and the diffusioncoefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations”, Concrete Science and Engineering , 216-224, (2001). [10] N. Dixit, V. Bali, S. Baboota, A. Ahuja, J. Ali, “Iontophoresis - An Approach for Controlled Drug Delivery: A Review,” Bentham Science, 1-10, (2007). [11] R. Bellazzi, G. Nucci, C. Cobelli, “The Subcutaneous Route to Insulin-Dependent Diabetes Therapy,” IEEE, Engineering in Medicine and Biology Magazine, 54-64, (2001). [12] C.J. Kim, “A linear drug release from erosion-controlled drug/resin complex systems,” Journal of Applied Polymer Science, 54. 1179-1183, (1994). [13] F. Liu, A. W. Basit, “A paradigm shift in enteric coating: Achieving rapid release in the proximal small intestine of man,” Journal of Controlled Release, 242-245, (2010). [14] A. A. Barba, M.D. Amore, S. Chirico, G. Lamberti , G. Titomanlio, “Swelling of cellulose derivative (HPMC) matrix systems for drug delivery, “Carbohydrate Polymers, 469-474, (2009). [15] W. Ryu, Z. Huang, F. B. Prinz, S. B. Goodman, R. Fasching, “Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor,” Journal of Controlled Release, 98-105, (2007). [16] D. Besten, M. W. Heidy, D Garcia, R. Moezelaar, M.H. Zwietering, T. Abee, “Direct-Imaging-Based Quantification of Bacillus cereus ATCC 14579 Population Heterogeneity at a Low Incubation Temperature,” Microbiology,76,927-930, (2010).   [17] M. W. Heidy, D. Besten, J.C. Ingham, E. T. Johan, V. H. Vlieg, M. M. Beerthuyzen, M. H. Zwietering, T. Abee, “Quantitative Analysis of Population Heterogeneity of the Adaptive Salt Stress Response and Growth Capacity of Bacillus cereus ATCC 14579,” Microbiology,73,4797-4804, (2007). [18] L. Alice, D. Hertog, W. D. Visser, C. J. Ingham, F. H. A. G. Fey, P.R. Klatser, R. M. Anthony, “Simplified Automated Image Analysis for Detection and Phenotyping of Mycobacterium tuberculosis on Porous Supports by Monitoring Growing Microcolonies ,” Plos ONE,5,e11008(2010). [19] B. C. Ferrari, S. J. Binnerup, M. illings,”Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria,”Microbiology, 1,8714-8720(2005). [20] E.Gultepe, D.Nagesha, S.Sridhar, .Amiji,”Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices,”Adv Drug Deliv Revs,62,305-315(2010). [21] T.Kaeberlein, Lewis K, Epstein SS,”Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment, “science,96,1127-1129,(2002). [22] H.Wieneke, O. Dirsch, T.Sawitowski, Y.L. Gu, H. Brauer, U. Dahmen, A. Fischer, S.Wnendt, R.Erbel,” Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits,” Catheter Cardiovasc Interv,60,399-407, (2003). [23] http://zh.wikipedia.org/zh-tw/%E5%B8%83%E6%9C%97%E8%BF % 90%E5%8A%A8 [24] http://phy.ntnu.edu.tw/physics/theory/Report/Brown''s%20motion .htm [25] D. Q. Li, “Electrophoretic motion of two spherical particles in a rectangular microchannel,” Microfluid Nanofluid, 1, 1,52-61,(2004). [26] D. Monk, “Controlled structure release for silicon surface micromachining,” Ph.D. thesis, University of California, Berkeley 164-180, (1993). [27] G. A. Bozhikov, G. D. Bontchev, P. I. Ivanov, A. N. Priemyshev, O. D. Maslov, M.V. Milanov, and S. N. Dmitriev,” DETERMINATION OF ION DIFFUSION COEFFICIENTS BY THE ELECTROMIGRATION METHOD,” J. of Radioanalytical and Nuclear Chemistry, 258,645, (2003). [28] T. Shedlovsky, A. S. Brown,” The Conductance at 25° of Lithium Chloride, Sodium and Potassium Bromides and Potassium Iodide in Methanol, and of Lithium Chloride, Sodium Bromide and Potassium Iodide in Water, D. AMacinnes,” Trans. Electrochem. Soc. 66,2855-2858,(1934). [29] A. Sagues, J. T. Wolan, A.D. Fex, T.J. Fawcett,” Impedance Behavior of Nanoporous SiC,” Electrochimica Acta ,51, 1656-1663,(2006). [30] C.L. Gardner, W. Nonner and R.S. Eisenberg,” Electrodiffusion model simulation of ionic channels: 1D simulations,” Journal of Computational Electronics, 3, 25-31, (2004).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1749-
dc.description.abstract本研究是利用陽極氧化鋁膜奈米多孔性及生物相容性,製作藥物釋放載具,目標為建立一簡單可調控的長效型藥物釋放系統。主要是以AAO為載體,先以黃光微影製程在AAO上製作微流道,為放置藥物的空間,去除光阻後進行藥物置放,再以具有生物可降解性的PLGA封裝,完成藥物釋放系統並進行藥物釋放測試。可降解實驗結果證實AAO具生物可降解性,孔徑90nm厚度60μm的AAO試片,可在pH 7.4的環境下使用18~20週,而不致產生結構破壞,故可做為長效釋放之應用。本研究分別以溶液電阻量測及擴散電流量測兩種方式,估算AAO之擴散係數。以溶液電阻量測法估算之擴散係數為1.44×10-9 m2/s,以擴散電流法計算之擴散係數為1.47×10-9 m2/s,兩者結果相當接近。擴散係數可用以估算載具之藥物釋放時間,估算結果得知約5.5個小時藥物會釋放其總量的50%,約40小時藥物會釋放完畢。實驗結果亦發現若AAO之厚度減少時,擴散係數增加,可推論擴散係數與孔洞長度成反比;實驗亦驗證擴散係數與載具之製程無關。zh_TW
dc.description.abstractIn this study, the porosity and bio-compatibility characteristics of anodic aluminum oxide (AAO) membranes are adopted for the fabrication of a long-term and controllable drug release device. The photolithographic technique is used to pattern a micro channel on the AAO substrate for the placing of desired drug. After installing the drug, the biodegradable material PLGA is used to seal the device. Biodegradation test demonstrates that a 60μm thick AAO substrate with an averaged pore size of 90 nm can sustain for 20 weeks when it is immersed in a solution with a pH value of 7.4. The solution resistance method and the diffusion current method are employed for the measurement of the diffusion coefficient of an AAO substrate. The measured diffusion coefficients for the solution resistance method and the diffusion current method are 1.44×10-9 m2/s and 1.47×10-9 m2/s, respectively. The diffusion coefficient is then used for the estimation of the drug releasing time. It is found that the installed drug can release 50% of the original amount in 5.5 h. It takes 40 h to completely release the whole amount. Additional experiments show that the diffusion coefficient of an AAO membrane increases with the reducing of its thickness.en_US
dc.description.tableofcontents目次(含頁碼) 目錄 致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究背景與動機 1 1.2論文大綱 4 第二章 文獻回顧與實驗原理 5 2.1 藥物釋放發展 5 2.1.1 控制釋放系統 5 2.1.2 AAO在組織培養與藥物釋放上的應用 8 2.2 陽極氧化鋁膜藥物釋放原理 9 2.2.1 擴散原理 9 2.2.2從擴散的觀點看布朗運動 10 2.2.3 釋放時間估算 11 2.2.4擴散係數D的計算 11 第三章 藥物釋放載具製備 13 3.1陽極氧化鋁膜的製備 13 3.2圖案化藥物載具製備 18 第四章 實驗與結果討論 23 4.1 AAO在仿生物體內環境之降解速率量測 23 4.1.1 AAO之降解性量測方法 23 4.1.2 AAO降解性量測實驗結果 23 4.2 溶液電流值變化量測 24 4.2.1溶液電流值變化量測方法 24 4.2.2溶液電流值變化量測實驗結果 25 4.3 AAO藥物載具之擴散係數量測 26 4.3.1 AAO藥物載具擴散係數量測方法 26 4.3.2 AAO藥物載具擴散係數量測實驗結果 26 4.4 AAO藥物載具之擴散電流量測 28 4.4.1 AAO藥物載具之擴散電流量測方法 28 4.4.2 AAO藥物載具之擴散電流量測實驗結果 28 4.5 AAO藥物載具藥物釋放時間估算 29 4.6不同參數之藥物載具材料特性效能比較 30 4.6.1 同材料蝕刻深度不同 30 4.6.2 以不同蝕刻液氧化但孔徑相同之AAO試片 31 4.7 擴散係數影響因子探討 32 第五章 結論與未來展望 34 5.1結論 34 5.2未來展望 35 參考文獻 36zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201100395000en_US
dc.subjectAAOen_US
dc.subject陽極氧化鋁膜zh_TW
dc.subjectdrug deliveryen_US
dc.subjectphotolithographicen_US
dc.subject藥物釋放zh_TW
dc.subject黃光微影製程zh_TW
dc.title圖案化陽極氧化鋁膜之藥物釋放應用zh_TW
dc.titleApplications of patterned Anodic Aluminum Oxide membranes on drug releaseen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.