Please use this identifier to cite or link to this item:
標題: 玻璃切割與刻劃製程之研究
A Study on Dicing and Scribing Processes of Glasses
作者: 陳宏信
Chen, Hung-Hsin
關鍵字: brittle materials;脆性材料;Scribing-Breaking;Two-Step Dicing;critical depth;刻劃裂片;兩段式切割;臨界切深
出版社: 機械工程學系所
引用: 【林,1993】林維新,“CBN輪磨研削加工技術”,機械技術雜誌,1993 【黃,1994】黃忠良譯著,精密陶瓷加工,復漢出版社,1994 【蔡等,2003】蔡青益、洪育民、洪全一,“可適用於多種不同材料的鑽石切割製程”,機械月刊,第二十九卷第七期,2003 【Allaire & Lapp,2001】R. A. Allaire and J. C. Lapp, “Scoring of AMLCD Glass”, Corning Incorporated, Technical Information Paper, 2001. 【Bifano et al,1991】T. G. Bifano, T. A. Dow and R. O. Scattergood, “Ductile Regime Grinding:A New Technology for Machining Brittle Materials”, Journal of Engineering for Industry, Transactions of the ASME, Vol.113, pp.184-189, 1991. 【Bradley & Thomas,2001】H. J. Bradley and A. D. Thomas, “Investigation of the Direction of Chip Motion in Diamond Turning”, Precision Engineering, Vol.25, pp.155-164, 2001. 【Connor et al,2005】B. P. O. Connor, E. R. Marsh and J. A. Couey, “On the Effect of Crystallographic Orientation on Ductile Material Removal in Silicon”, Precision Engineering, Vol.29, pp.124-132, 2005 【Efrat,1993】U. Efrat, “Optimizing the Wafer Dicing Process”, IEEE/CHMT Electronics Manufacturing Technology Symposium, pp245-253, 1993. 【Griffith,1921】A. A. Griffith, “The Phenomena of Rupture and Flow in Solids”, Philosophical Transactions of the Royal Society of London. A, Vol.221, pp. 163-197, 1921. 【Hwang et al,1999】T. W. Hwang, C. J. Evans and S. Malkin, “Size Effect for Specific Energy in Grinding of Silicon Nitride”, Wear, pp862-867, 1999 【Houérou et al,2003】V. Le Houérou, J.-C Sangleboeuf, S. Dériano, T. Rouxel and G. Duisit, “Surface Damage of Soda–Lime–Silica Glasses: Indentation Scratch Behavior”, Journal of Non-Crystalline Solids, Vol.316, pp. 54-63, 2003. 【Irwin,1958】G. R. Irwin, “Fracture”, Springer Handbuch der Physik VI, Vol.6 pp.551–590, 1958. 【Kim & Suh,1993】D. E. Kim and N. P. Suh, “Plastic Deformation of Silicon During Contact Sliding at Ambient Temperature”, Journal of Materials Science, Vol. 28, pp. 3895-3899, 1993. 【Konstanty,2002】J. Konstanty, “Theoretical Analysis of Stone Sawing with Diamonds”, Journal of Materials Processing Technology, Vol.123, pp.146-154, 2002 【Lawn & Evans,1977】B. Lawn and A.G. Evans, “A Model for Crack Initiation in Elastic/Plastic Indentation Fields”, Journal of Materials Science, Vol.12, pp.2195-2199, 1977. 【Luo,1996】S. Y. Luo, “Characteristics of Diamond Saw Blade Wear in Sawing”, International Journal of Machine Tools and Manufacture, Vol.36, pp.661-672, 1996 【Leung et al,1998】T. P. Leung, W. B. Lee, and X. M. Lu, “Diamond Turning of Silicon Substrates in Ductile-Regime”, Journal of Materials Processing Technology 73, pp42-48, 1998. 【Lucca et al,1998】D. A. Lucca, P. Chou and R. J. Hocken, “Effect of Tool Edge Geometry on the Nanometric Cutting of Ge”, Annals of the CIRP, Vol.47, pp.475-478,1998. 【Misra and Finnie,1979】A. Misra and I. Finnie, “On the Scribing and Subsequent Fracturing of Silicon Semiconductor Wafer”, Chapman and Hall, pp.2567-2574, 1979. 【Marshall & Lawn,1986】D. B. Marshall and B. R. Lawn, “Indentation of Brittle Materials”, Microindentation Tech. in Materials Science and Engineering, ASTM STP , pp. 889, 1986 【Matsuo & Ohbuchi,1988】T. Matsuo and Y. Ohbuchi, “Slot Grinding of Steels and Ceramics with Super Abrasive Wheels”, Annals of the CIRP, Vol. 37, pp315-318, 1988. 【Malkin,1989】S. Malkin, Grinding Technology Theory and Applications of Machining with Abrasives, Ellis Horwood Series in Mechanical Engineering, 1989. 【Matsuo et al,1997】T. Matsuo, M. Touge and H. Ymada , “High-Precision Surface Grinding of Ceramics with Superfine Grain Diamond Cup Wheels”, Annals of the CIRP, Vol. 46, pp249-252, 1997. 【Obhuchi et al,1997】Y. Obhuchi, N. Ueda, M. Touge, T. Matsuo, K. Takeuchi and S. Hata, “High Precision Cut-off Grinding of Electronic Ceramics with Thin Diamond”, Proceedings of International Conference on Precision Engineering, pp391- 395, 1997. 【Puttick et al,1989】K. E. Puttick, M. R. Rudman, F. A. Smith, and K. Lindsey, “Single Point Diamond Machining of Glasses”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 426, pp. 19-30, 1989. 【Shah & Ram,1992】H. Shah and S. Ram, “Characterization of the Wafer Dicing Process Using Taguchi Methodology”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp200205, 1992 【Warren & Hills,1999】 P. D. Warren and D. A. Hills, “Determination of Surface Residual Stress in Brittle Materials by Hertzian Indentation:Theory and Experiment”, Journal of the American Ceramic Society, Vol.82, pp1809-1816, 1999 【Xu et al,2002】X. P. Xu, Y. Li, W. Y. Zeng and L. B. Li, “Quantitative Analysis of the Loads Acting on the Abrasive Grits in the Diamond Sawing of Granties”, Journal of Materials Processing Technology, Vol. 129, pp50-55, 2002 【Yoshino et al,2001】M. Yoshino, T. Aoki, T. Shirakashi and R. Komanduri, “Some Experiments on the Scratching Inside an SEM and Scratching Under High External Hydrostatic Pressures”, International Journal of Mechanical Sciences, Vol.43, pp. 335-347, 2001. 【Yan et al,2002】J. Yan, K. Syoji, T. Kuriyagawa and H. Suzuki, “Ductile Regime Turning at Large Tool Feed”, Journal of Materials Processing Technology 121, pp363-372, 2002. 【,2003】J. Yan, K. Syoji and J. Tamaki, “Some Observations on the Wear of Diamond Tools in Ultra-Precision Cutting of Single-Crystal Silicon”, Wear, 255, pp.1380-1387, 2003.
玻璃具有良好的透光性、均質性和不同的折射率,可應用於各種光學設備,市場廣大且需求量也逐年增加。由於玻璃具有高硬度與高脆性的特點,加工後極易產生變質層的破壞、破缺與裂痕。本研究針對青板玻璃與硼玻璃之切割與刻劃製程,比較該製程使用先刻劃再裂片、直接切割再裂片以及全切穿式與兩段式切穿四種加工方式之加工效果。研究結果顯示(1)利用脆性材料破裂理論預測青板玻璃的臨界切削深度為0.78μm,硼玻璃的臨界切削深度為0.47μm,刻劃實驗結果顯示青板玻璃的臨界切削深度介於0.4μm 至0.8μm之間,硼玻璃的臨界切削深度介於0.3μm至0.5μm,驗證了理論預測的合理性。(2)利用先刻劃再裂片來使玻璃分離,刻劃深度需控制在延-脆性區域間進行,使其產生中央裂紋且避免側向裂紋,方可獲得最佳的裂片品質。(3)玻璃切割實驗結果顯示,降低進給、增加轉速與使用兩段式切割所產生的缺陷值較小,有效提升加工品質。(4)先切割再裂片製程雖然不會產生背面缺陷,但裂片方向不固定,且切割寬度大於裂片寬度,會造成尺寸誤差,需再經由研磨將刀痕磨平,耗費額外的製程與較長的加工時間。

Glasses have good optical properties which can be applied to various optical devices such as optical lens and liquid crystal display. The demand of glasses is vast while still increasing year by year. As glasses are brittle materials with high hardness and extremely high fragility, it is common to damage the material, such as breakage, breach and crack, in the machining process. This research is aimed to investigate machining schemes for cutting glasses to reduce the damage in the processes. Ductile machining and brittle machining of glasses are first analyzed based on fracture mechanics. Experiments with different schemes including scribing-then-breaking, dicing-then-breaking, direct-dicing and two-step-dicing processes for soda lime glass and borosilicate glass are then conducted. Major results of this study include the followings. (i) Results by scribing experiments showed that critical depth of cut (DOC) for soda lime glass is between 0.4μm to 0.8μm and between 0.3μm to 0.5μm for borosilicate glass. The results match theoretical predictions based on fracture analysis that DOC for the soda lime glass and for the borosilicate glass are 0.78μm and 0.47μm respectively. (ii) The best machining scheme that results in least damage is the scribing-then-breaking process. The DOC of scribing, however, must be in the ductile-brittle region to generate a middle crack while avoiding lateral crack. (iii) Least damage can be achieved by reducing feed, increasing spindle speed in two-step-dicing process. (iv) Although back-surface defect can be avoided by dicing-then-breaking process, direction of crack generated in the process is not regular. Furthermore, size error can be induced as dicing width is higher than cracking width, not to mention that post grinding and lapping process must be employed to eliminate the scratches and burs.
其他識別: U0005-2908200613015900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.