Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.author銘, 陳 鴻zh_TW
dc.contributor.authorChen, Hung-Mingen_US
dc.identifier.citation[1]Awabdy B. A., Wu C.S., and Auslander D.M., “ Nanometer positioning of a linear motion stage under static loads”, IEEE/ASME Transactions on mechatronics, 1998 ,June ,Vol.3, No.2, pp.113-119. [2]Bodson M., Chiasson N. J., Novotnak R. T., and Rekowski R. B.,“High-performance nonlinear feedback control of a permanent magent steppermotor”, IEEE Transaction on Control System Technology, 1993, Vol. 1, No. 1,pp. 5-14. [3]Callender A., Hartree D. R. and Porter A., “Time-lag in control system”, Philosophical Transactions of the Royal Society of London, 1936, A235(756), pp. 415-444. [4]Carrica D.O., Gonzalez S.A., and Benedetti M., “A high speed velocity control algorithm of multiple stepper motors”, Mechatronics, 2004, Vol. 14, pp. 675-684. [5]Chang S. H. and Li S. S., “A high resolution long travel friction-drive micropositioner with programmable step size”, Review of Scientific Instruments,1999, pp. 2776-2782. [6]Chang S. H., Tseng C. K. and Chien H. C., “An ultra-precision XYΘZpiezo-micropositioner. I. design and analysis”, IEEE Transaction on Ultrasonics,Ferroelectric, and Frequency Control, 1999, Vol. 46, No. 4, pp. 897-905. [7]Chang S. H., Tseng C. K. and Chien H. C., “An ultra-precision XYΘZ piezo-micropositioner. II. Experiment and performance”, IEEE Transaction on Ultrasonics,Ferroelectric, and Frequency Control, 1999, Vol. 46, No. pp. 906-912. [8]Fan, K.C., “A non-contact automatic measurement for free-form surface profile”, Computer Integrated Manufacturing System, 1997, Vol. 10, No. 5, pp. 277-285. [9]Hara, A. and Sugimoto, K., “Synthesis of parallel micromanipulators”, ASME Journal of Mechanism, Transmissions, and Automation in Design, 1989, Vol. 49, No. 12, pp. 1735-1740. [10]Heil J., Bohm A., Primke M., and Wyter P., “Versatile three-dimensional cryogenic micropositioning device”, Review of Scientific Instruments, 1996, Vol. 67, No. 1, pp. 307-311. [11]Her, A. and Chang, J., ”A linear scheme for the displacement analysis of micropositioning stage with flexure hinges”, ASME Transaction, Journal of Mechanism Design, 1994, Vol. 116, No. 3, pp. 770-776. [12]Kanai A., Sano H., Yoshioka J., and Miyashita M., ”Positioning of a 200kgcarriage on plain bearing guideways to nanometer accuracy with force-operated linear actuator”, Nanotechnology, 1991, Vol. 2, pp. 43-51 [13]Lewin C., “Motion control gets gradually better,” Machine Design, 1994, pp. 90-94. [14]Minorsky N., “Directional stability of automaticakky steered body”, Journal of American Society Naval Engineers, 1922, 42(2), No. 2, pp. 280-309. [15]Mizumoto H., Nomura K., Matsubara T., and Shimizu T., “An ultraprecision positioning system using a twist-roller friction drive”, Precision Engineering, 1993, Vol. 15, pp. 180-184. [16]Mizumoto H., Yabuya M., Shimizu T., and Kami Y., “An angstrom-positioning system using a twist-roller friction drive”, Precision Engineering, 1995, Vol. 17, pp. 57-62. [17]Nomura T. and Suzuki R., “Six-axis controlled nanometer-order positing stage for microfabrication”, Nanotechnology, 1992, Vol. 3, pp. 21-28. [18]Tanaka, M., “The dynamic properties of monolithic mechanism with flexure hinges for precision control of orientation and position”, Japanese Journal of Applied Physics, 1983, Vol. 22, No. 1, pp. 193-200. [19] Wang W. and Ilene B-V., “A high precision micropositionerbased on magnetostrction principle”, Review of Scientific Instruments, 1992,Vol. 3, No. 1, pp. 21-28 [20]Wang W. and Tian H., “A high precision icropositioner with five degrees of freedom based on an electromagnetic driving principle”, Review of ScientificInstruments, 1996, Vol. 67, No. 1, pp. 312-317. [21]Zigler J. G., and Nichols N. B., “Optimum settings for automatic controllers”, Transactions of the Royal Society of London, 1936, A235(756), pp. 415-444. [22] 劉瑞弘,”X-Y 平台之高速精密定位控制”,國立中山大學,機械工程學系碩士論1999。 [23] 朱延朗,“微精密定位平台之機電整合與特性分析”,國立雲林科技大學,機械工程學系,碩士論文,2000。zh_TW
dc.description.abstract本文係以實驗方法作定位控制,其研究目的是要使工件進入定位平台後可以達成快速且準確的定位。實驗架構是以一伺服馬達帶動導螺桿做為直線驅動裝置,同時,以另一伺服馬達直接帶動平台做為旋轉驅動的機構,利用雷射位移計搭配全閉迴路PID控制進行平台定位控制。主要內容為改變剛體中心不同的初始位置,探討剛體中心位置定位的優劣。研究結果顯示: 1、工件中心定位品質的優劣受到工件中心與馬達中心的水平與垂直距離、工件大小以及載重的影響,且工件中心僅以三次移動就可到達定位點。 2、修正的偏向角度隨著水平距離增大而減小,反之則增大;隨著垂直距離的增大而增大,反之則減小;隨者工件尺寸增大而減小,反之則而增大。 3、當滿足定位誤差時,工件四頂點誤差值會隨著水平距離增大而減小,反之則增大;隨著垂直距離增大而增大,反之則減小;隨著工件尺寸增大而減小,反之則增大。 4、在相同的工件中心與馬達中心的水平(Xr)與垂直(Yr)距離時,雖然初使偏向角度不同,最後都會收斂到某一特定角度。此角度隨著水平距離增大而減小,反之則增大;隨著垂直距離增大而增大,反之則減小。 5、當平台載重為1公斤時,除了在一開始長行程移動時會造成較大的振動外,而在短行程之內都沒有太大的影響。zh_TW
dc.description.abstractThe aim of present investigation is to efficiently control the accuracy of workpiece center. The linear motion in X direction is guided by a pair of parallel bolt screws fixed at both ends. Both the linear and the rotational motions are driven by two servo motors separately. A laser displacement sensor, coupled with PID fully close control loop, was employed for controlling the motion of the working table. The center positions of the workpiece are experimented for various initial workpiece center positions relative to the motor center. The important findings are: 1.Horizontal and vertical distance between the centers of the motor and the workpiece, the size of workpiece and payload are the key parameters that affect significantly the positioning of the workpiece. In the present study, it takes only three steps to center the workpiece accurately. 2.The account of adjustable angular displacement of the workpiece reduces as the horizontal and vertical distance between the centers becomes large and small, respectively. It also decreases for the large size of workpiece. 3.When satisfying the required position criterion, the error of the vertex of the workpiece is small for large horizontal and/or small vertical distance between the centers. 4.For the same initial horizontal and vertical distance between the centers, the final biased angular displacement will reach a certain value. This value decreases as the horizontal distance increases or/and the vertical distance decreases. 5.When the payload weights 1 kilogram, large fluctuation occurs during the long-range movement at the beginning stage; however, the influence is insignificant in the short-range or the final stage positioning.en_US
dc.description.tableofcontents目錄 中文摘要-------------------------------------------------Ⅰ 英文摘要-------------------------------------------------Ⅱ 符號說明-------------------------------------------------Ⅲ 目錄-----------------------------------------------------Ⅴ 圖表目錄-------------------------------------------------Ⅶ 第一章 序論---------------------------------------------1 1-1前言----------------------------------------------1 1-2研究動機與目的------------------------------------2 1-3文獻回顧------------------------------------------3 1-4論文結構------------------------------------------6 第二章 系統原理、定位誤差現象與量測元件-----------------7 2-1基本控制原理--------------------------------------7 2-1-1控制系統簡介--------------------------------7 2-1-2 PID控制系統--------------------------------8 2-2伺服馬達特徵與優缺點------------------------------9 2-3定位誤差的探討-----------------------------------10 2-4量測元件-----------------------------------------13 第三章 機台製作與馬達控制說明--------------------------15 3-1硬體架構-----------------------------------------15 3-2控制軟體-----------------------------------------15 3-2軟硬體之介面-------------------------------------16 第四章 測試平台特性及實驗方法---------------------------17 4-1精度量測-----------------------------------------17 4-1-1進給速度與定位精度量測---------------------17 4-1-2反覆定位精度-------------------------------18 4-1-3背隙大小量測-------------------------------18 4-1-4小步數測試---------------------------------19 4-2定位系統量測-------------------------------------19 4-2-1工件剛體中心和最大角度運算運算-------------19 4-2-2工件剛體中心定位---------------------------25 4-2-3程式部份-----------------------------------26 第五章 結果與討論 ---------------------------------------27 5-1平台特性測試-------------------------------------27 5-1-1旋轉精度結果-------------------------------27 5-1-1-1進給速度與定位精度-------------------27 5-1-1-2反覆定位精度-------------------------28 5-1-1-3背隙大小-----------------------------28 5-1-1-4小步數測試---------------------------28 5-1-2直線精度結果-------------------------------29 5-1-2-1進給速度與定位精度-------------------29 5-1-2-2反覆定位精度-------------------------30 5-1-2-3背隙大小-----------------------------30 5-2定位結果-----------------------------------------30 5-2-1工件中心不同初始位置的定位範圍-------------30 5-2-2工件中心位於不同初始位置的定位結果討論-----31 5-2-3工件中心完成定位後之最大偏轉角度-----------32 5-2-4工件的角度定位過程-------------------------34 5-2-5 工件在定位完成後四頂點誤差量與角度之關係 ------------------------------------------34 5-2-6 工件中心定位與時間之關係------------------35 第六章 結論---------------------------------------------37 第七章 未來展望-----------------------------------------39 參考文獻-------------------------------------------------40zh_TW
dc.subjectServo motoren_US
dc.subjectX-θ tableen_US
dc.subjectPID controlen_US
dc.subjectClose loop controlen_US
dc.titleExperimental Study on Positioning Control of Rigid Flat Panel with AC Servo Motoren_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.