Please use this identifier to cite or link to this item:
標題: 科氏力誘導之旋轉微流體控制:螢光偵測與可視化實驗
Coriolis force induced rotating microfluidic control: fluorescence detection and visualization experiments
作者: 嚴開杰
Yen, Kai-Jay
關鍵字: microfluidic;微流體;Coriolis force;fluorescence;科氏力;螢光
出版社: 機械工程學系所
引用: Anderson, R. C., Bogdan, G. J., Barniv, Z., Dawes, T. D., Winkler, J. and Roy, K., “Microfluidic Biochemical Analysis System,” Proceedings of International Conference on Solid-State Sensor and Actuators, Vol. 1, 1997, pp. 477-480. Badr, I. H. A., Johnson, R. D., Madou, M. J., and Bachas, L. G., “Fluorescent Ion-Selective Optode Membranes Incorporated onto a Centrifugal Microfluidics Platform,” Anal. Chem., Vol. 74, No. 21 , 2002, pp. 5569-5575. Beebe, D. J., Trumbull, J. D., and Glasgow, I. K., “Microfluidics and Bioanalysis System: Issue and Examples,” Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, Vol. 20, 1998, pp. 1692-1697. Brenner, T., Glatzel, T., Zengerle, R., and Ducree, J., “Frequency-Dependent Transversal Flow Control in Centrifugal Microfluidics,” Lab on a chip, Vol. 5, 2005, pp. 146-150. Ducree, J., Brenner, T., Haeberle, S., Glatzel, T., and Zengerle, R., “Multilamination of Flows in Planar Networks of Rotating Microchannels,” Microfluidics and Nanofluidics, Vol. 2, 2005, pp.78-84. Ducree, J., Brenner, T., Glatzel, T., and Zengerle, R., “A Flow Switch Based on Coriolis Force,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003. Duffy, D. C., Gills, H. L., Lin, J., Sheppard, N. F., and Kellogg, G. J., “Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays,” Anal. Chem., Vol. 71, No. 20, 1999, pp. 4669-4678. Erickson, D. and Li, D., “Integrated Microfluidic Devices,” Analytica Chimica Acta, Vol. 507, 2004, pp. 11-26. Fister, J. C., III, Jacobson, S. C., Davis, L. M., and Ramsey, J. M., “Counting Single Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices,” Anal. Chem., Vol. 70, No. 3, 1998, pp. 431-437. Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., and Mathies, R. A., “Monolithic Membrane Valves and Diaphragm Pumps for Practical Large-Scale Integration into Glass Microfluidic Devices, ” Sensors and Actuators B: Chemical, Vol. 89, 2003, pp. 315-323. Haab, B. B., and Mathies, R. A., “Single-Molecule Detection of DNA Separations in Microfabricated Capillary Electrophoresis Chips Employing Focused Molecular Streams,” Anal. Chem., Vol. 71, No. 22, 1999, pp. 5137-5145. Hossein, S.-M., Jiang, Y., Lester, L., McKinnon, G., and Harrison, D. J., “A Multireflection Cell for Enhanced Absorbance Detection in Microchip-Based Capillary Electrophoresis Devices,” Electrophoresis Vol. 21, 2000, pp. 1291-1299. Lee, L. J., Madou, M. J., Lu, Y., Lai, S., Koh, C. G., and Wenner, B. R., “A Novel Design on a CD Disc for 2-Point Calibration Measurement,” Sensors and Actuators, Vol. 91, No. 3, 2001, pp. 301-306. Lee, Y.-K., Deval, J., Tabeling, P., and Ho, C.-M., “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” Proceedings of the 14th IEEE Micro Electro Mechanical Systems (MEMS), Interlaken, Switzerland, 2001, pp. 483-486. Liu, B.-F., Ozaki, M., Hisamoto, H., Luo, Q., Utsumi, Y., Hattori, T., and Terabe, S., “Microfluidic Chip toward Cellular ATP and ATP-Conjugated Metabolic Analysis with Bioluminescence Detection,” Anal. Chem., Vol. 77, No. 2, 2005, pp. 573-578. Matthieu, D., Koh, A., Agnes, M.-T., and Hiroyuki, F., “A Microfluidic Device for Long-Term Study of Individual Cells,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003. Monahan, J., Gewirth, A. A., Nuzzo, R. G., “Indirect Fluorescence Detection of Simple Sugars via High-pH Electrophoresis in Poly(dimethylsiloxane) Microfluidic Chips,” Electrophoresis, Vol. 23, 2002, pp. 2347–2354. Roulet, J.-C., Volkel, R., Herzig, H. P., Verpoorte, E., de Rooij, N. F., and Dandliker, R., “Performance of an Integrated Microoptical System for Fluorescence Detection in Microfluidic Systems,” Anal. Chem., Vol. 74, No. 14, 2002, pp. 3400-3407. Seo, J., and Lee, L. P., “Disposable Integrated Microfluidic with Self-Aligned Planar Microlenses,” Sensors and Actuators B: Chemical, Vol. 99, 2004, pp. 615-622. Situma, C., Hashimoto, M., and Soper, S. A., “Merging Microfluidics with Microarray-Based Bioassays,” Biomolecular Engineering, Vol. 23, 2006, pp. 213-231. Studer, V., Pepin, A., Chen, Y., and Ajdari, A., “Fabrication of Microfluidic Devices for AC Electrokinetic Fluid Pumping,” Microelectronic Engineering, Vol. 61-62, 2002, pp. 915-920. Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., “Chaotic Mixer for Microchannels,” Science, Vol. 295, 2002, pp. 647-651. Yakovleva, J., Davidsson, R., Lobanova, A., Bengtsson, M., Eremin, S., Laurell, T., and Emneus, J., “Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection,” Anal. Chem., Vol. 74, No. 13, 2002, pp 2994-3004. Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., “Ultrasonic Micromixer for Microfluidic Systems,” Proceedings of 13th Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, 2000, pp. 80-85. Yao, B., Luo, G., Wang, L., Gao, Y., Lei, G., Ren, K., Chen, L., Wang, Y., Hub, Y., and Qiubc, Y., “A microfluidic Device Using a Green Organic Light Emitting Diode as an Integrated Excitation Source,” Lab on a Chip, Vol.5, 2005, pp. 1041-1047. 林明甲,電泳微流道之模擬與分析運用,大葉大學碩士論文, 2004. 林茂吉,光碟式旋轉微流體混合之可視化實驗,國立中興大學碩士論文, 2005. 許育群,微流體電泳晶片之建構及其在毛細電泳檢測上之應用,國立中興大學碩士論文, 2003 許晉嘉, Y型結構微混合器之旋轉可視化實驗,國立中興大學碩士論文, 2005. Hamamatsu, September, 2005
本研究以旋轉時產生的離心力驅動流體,觀察科氏力對於流體的影響。實驗採用微影製程方式於透明壓克力上製作實驗晶片,流道結構設計為倒Y形狀,倒Y夾角分別為30至60˚,而流道深度為100 μm,寬度則在100至300 μm的範圍。實驗主要觀察科氏力對倒Y分叉流道兩出口流量的影響,同時藉由螢光偵測及流場可視化的方式得知旋轉時科氏力影響流體的情形。以螢光偵測時利用螢光顯微鏡並搭配光電倍增管量測螢光訊號;流場可視化則以He-Ne Laser及光二極體同步觸發CCD攝影機擷取影像。本實驗發現,流體的流量隨著轉速提高往其中一分叉流道增加,而在某轉速以上流體完全由其中一邊的流道流出,而螢光偵測結果與可視化實驗結果一致。旋轉方向為逆時針轉,流道寬100 μm倒Y夾角30、40、50及60˚的臨界轉速分別為1500、1800、2400及3600 rpm,而固定倒Y夾角為30˚,流道寬度為150、200、300 μm的臨界轉速分別為2000、2600及3400 rpm。實驗亦發現在相同轉速下,科氏力影響的程度隨流道幾何變化而有所差異。

This paper reports experiments of flow switch in rotating microfluidics through a separator of inverse Y-shape. In this experimental study, the microfluidics consisting of a Y-separator is fabricated on a PMMA disk. The switch of flow on a fast rotating disk is due mainly to the Coriolis force that propels the fluid toward the transverse direction. A symmetric Y-separator would split the flow evenly to the two outlet channels if the Coriolis force were not present. As the rotational speed increases, however, a bias may be induced by the Coriolis force leading to unequal flow rates between the two outlets and eventually the flow is diverted into one of the outlets above a threshold speed. We examine the switching phenomenon using a photomultiplier tube (PMT) in conjunction with an epi-fluorescence microscope for Y-separators of 100 μm in depth various divergence angles (30 - 60 deg) and channel widths (100 - 300 μm). The flow switching measured with PMT was confirmed by flow visualization using the micro image-capturing unit in synchronization with the rotational motion of the microfluidic disk. For the channel width of 100 μm, the threshold rotational speed increases from 1500 to 1800, 2400 and 3600 rpm with an increase of the divergence angle from 30 to 40, 50 and 60 deg. For the divergence angle of 30 deg, the threshold rotational speed increases from 2000 to 2600 and 3400 rpm with an increase of the channel width from 150 to 200 and 300 μm.
其他識別: U0005-0108200717215000
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.