Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1783
標題: 結合電感的微機電射頻開關之設計與製作
Design and Fabrication of RF MEMS Switches Combined with Inductors
作者: 陳盈良
Chen, Ying-Liang
關鍵字: MEMS;微機電;RF switches;actuator;post-process;series inductors;equivalent circuit;射頻開關;致動器;後製程;串聯電感;等效電路
出版社: 機械工程學系所
引用: [1] J. J. Yao, “RF MEMS from a device perspective,” Journal of Micromechanics and Microengineering, vol. 10, No. 4, 2000, pp. R9-R38. [2] C. T. C. Nguyen, L. P. B. Katehi and G. M. Rebeiz, “Micromachined devices for wireless communication,” Proceedings of the IEEE, vol. 86, No. 8, 1998, pp. 1756-1768. [3] J. J. Yao and M. F. Chang, “A surface micromachined miniature switch for telecommunication applications with signal frequencies from dc up to 4 GHz,” International Conference on Solid-State Sensors and Actuators, Proceedings, vol. 2, 1995, pp. 384-387. [4] C. Goldsmith, J. Randall, S. Eshelman, T. H. Lin, D. Denniston, S. Chen and B. Norvell, “Characteristics of micromachined switches at microwave frequencies,” IEEE Microwave Theory Tech. Symp., vol. 4, No. 2, 1996, pp. 1141–1144. [5] D. Hyman, J. Lam and B. Warneke, “Surface-micromachined RF MEMs switches on GaAs substrates,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 9, No. 4, 1999, pp. 348-361. [6] C. Chang and P. Chang, “Innovative micromachined microwave switch with very low insertion loss,” Sensors and Actuators A, vol. 79, No. 1, 2000, pp. 71-75. [7] J. Y. Qian, B. A. Cetiner and Q. Xu, “RF MEMS capacitive switches fabricated with HDICP CVD SiNx,” IEEE MTT-S International Microwave Symposium Digest, vol. 1, 2002, pp. 231-234. [8] W. B. Zheng, Q. A. Huang, X. P. Liao and F. X. Li, “RF MEMS membrane switches on GaAs substrates for x-band applications,” Journal of Microelectromechanical Systems, vol. 14, No. 3, 2005, pp. 464-471. [9] C. Richard, L. Robert, B. David and F. Milton, “Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles,” Journal of Microelectromechanical Systems, vol. 12, No. 5, 2003, pp. 713-719. [10] K. U. Harms and J. T. Horstmann, “Fabrication concept for a CMOS-compatible electrostatically driven surface MEMS switch for RF applications,” Microelectronic Engineering, vol. 73, 2004, pp. 468-473. [11] J. M. Kim, J. H. Park and C. W. Baek, “The SiOG-Based Single-Crystalline Silicon (SCS) RF MEMS Switch With Uniform Characteristics,” Journal of Microelectromechanical Systems, vol. 13, No. 6, 2004, pp. 1036-1042. [12] S. D. Lee, B. C. Jun and S. D. Kim, “A novel pull-up type RF MEMS switch with low actuation voltage,” IEEE Microwave and Wireless Components Letters, vol. 15, No. 12, 2005, pp. 856-858. [13] D. I. Forehand and C. L. Goldsmith, “Wafer level Micropackaging for RF MEMS switches,” Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, pp. 2047-2051. [14] Q. X. Zhang, A. B. Yu and D. L. Kwong, “RF MEMS Switch Integrated on Printed Circuit Board With Metallic Membrane First Sequence and Transferring,” IEEE Electron Device Letters, vol. 27, No. 7, 2006, pp.2-554. [15] Y. Zhang, K. Onodera and R. Maeda, “RF micro-electro-mechanical systems capacitive switches using ultra thin hafnium oxide dielectric,” Japanese Journal of Applied Physics, vol. 45, No. 1, 2006, pp. 300-304. [16] H. C. Lee, J. H. Park and Y. H. Park, “Development of shunt type ohmic RF MEMS switches actuated by piezoelectric cantilever,” Sensors and Actuators, A, vol. 136, No. 1, 2007, pp. 282-290. [17] C. F. Herrmann, F. W. Delrio, D. C. Miller and S. M. George, “Alternative dielectric films for RF MEMS capacitive switches deposited using atomic layer deposited Al2O3/ZnO alloys,” Sensors and Actuators A, vol. 135, No. 1, 2007, pp. 262-272. [18] G. M. Rebeiz and J. B. Muldavin, “RF MEMS Switches and Switch Circuits,” IEEE Microw. Mag. vol. 2, No. 4, 2001, pp. 59–71. [19] L. Xiaofeng, L. Zewen, L. Zhijian, C. Zhongmin and L. Litian, “Design of coils inductively-tuned RF MEMS shunt switches using novel modeling method,” International Conference on Solid-State and Integrated Circuits Technology Proceedings, ICSICT, vol. 3, 2004, pp. 1739-1742. [20] H. Baltes, O. Brand, A. Hierlemann, D. Lange and C. Hagleitner, “CMOS MEMS-present and future,” The fifteenth IEEE Internation Conference on Micro Electro Mechanical System, 2002, pp. 459-466. [21] D. Peroulis, S.P. Pacheco, K. Sarabandi and L. P. B. Katehi, “Electromechanical considerations in developing low-voltage RF MEMS switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, No. 1, 2003, pp. 259-270. [22] G. M. Rebeiz, “RF MEMS Theory, Design, and Technology”. [23] http://www.hp.woodshot.com/ [24] http://www.ansoft.com/ [25] http://eesof.tm.agilent.com/ [26] R. Ramadoss, S. Lee, Y. C. Lee, V. M. Bright and K. C. Gupta, “Flexible Polyimide Film Based High Isolation RF MEMS Switches Fabricated Using Printed Circuit Processing Techniques,” Proceedings of the IEEE International Conference on MEMS, 2005, pp. 179-182. [27] J. B. Muldavin and G. M. Rebeiz, “Nonlinear electro-mechanical modeling of MEMS switches,” IEEE MTT-S International Microwave Symposium Digest, vol. 1, 2001, pp. 2119-2122. [28] Coventor Inc., CoventorWare Version 2004 Tutorials. [29] O. Paul, D. Westberg, M. Hornung, V. Ziebart and H. Baltes, “Sacrificial aluminum etching for CMOS microstructures,” Processing of IEEE Tenth Annual International Workshop on MEMS, 1997, pp. 523-528. [30] J. Buhler, F-P Steiner and H. Baltes, “Silicon dioxide sacrificial layer etching in surface micromachining.” Journal of Micromechanics and Microengineering, vol. 7, No. 1, 1997, pp. R1-R13. [31] Transene Company Inc., http://www.transene.com [32] http://www.microphotonics.com/ZoomSurf3D.htm [33] David M. Pozar, Microwave engineering, 3rd ed. Hoboken, Wiley, 2005. [34] RF Measurement, Chip Implementation Center Training Manual, January 2004, pp. 164. [35] http://www.cic.org.tw [36] Y. Zhang, “RF MEMS capacitive switches using ultra thin hafnium oxide dielectric,” Japanese Journal of Applied Physics, vol. 45, No 1, 2006, pp.1-304. [37] J. B. Muldavin and G. M. Rebeiz, “High-isolation CPW MEMS shunt switches - Part 1: modeling,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, No 6, 2000, pp. 1045-1052. [38] J. B. Muldavin and G. M. Rebeiz, “High-isolation CPW MEMS shunt switches - Part 2: design,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, No 6, 2000, pp. 1053-1056. [39] Y. L. Lai and Y. D. Wen, “Mechatronic design of RF MEMS switches for communication applications,” Midwest Symposium on Circuits and Systems, vol. 1, 2004, pp. 365-368. [40] 莊達人,VLSI製造技術,高立圖書有限公司,2003。 [41] 行政院國家科學委員會,微機電系統技術與應用,精密儀器發展中心出版, 2003。 [42] 黃進芳,微波工程,五南圖書有限公司,2004。 [43] 彭宣榕,以蝕刻CMOS氧化層的後製程處理方式製作微機電射頻開關,國立 中興大學碩士論文,2005。 [44] 陳俊翰,低驅動電壓之微機電射頻開關,國立中興大學碩士論文,2006。
摘要: 
本論文主要為電容式微機電射頻開關的結構設計與高頻特性分析,製作是利用台積電標準0.35μm 2P4M(double polysilicon four metal) CMOS(complementary metal oxide semiconductor)製程來製作微機電射頻開關,是以靜電力的方式驅動微開關,微開關的結構主要包含共平面波導線(CPW)、懸浮薄膜及串聯電感。其中,懸浮薄膜是利用後製程蝕刻氧化矽所製作而成。本研究設計三種微開關,分別為低驅動電壓的微開關(Type-a)、串聯電感的微開關(Type-b)與較高驅動電壓結合串聯電感的微開關(Type-c),並探討此三種微開關的高頻特性。實驗數據顯示,當微開關結合串聯電感後,共振頻率較易獲得,並且利用此方式可更容易得到微開關之最佳隔離度。微開關在未施加電壓,串聯電感後,其頻率在22 GHz時,插入損失為-1.50 dB,反射損失為-10.4 dB。當施予驅動電壓13V時,可輕易的找到共振頻率點,其共振頻率點為22 GHz時,具有最大隔離度為-19.0 dB。

This paper studies the structural design and performance analysis of RF micromechanical system (MEMS) capacitance switches. The fabrication of the switches uses the standard 0.35μm 2P4M (double polysilicon four metal) CMOS (complementary metal oxide semiconductor) process and post-process. The switches are actuated by an electrostatic force. The structure of switches consists of a CPW transmission lines, suspended membrane and series inductors. The suspended membrane of the switches is released by using the post-process of etching silicon dioxide. This study designs three kinds of switches, which are low driving voltage switch, low driving voltage switch with series inductors, and higher driving voltage switch with series inductors. The performances of three switches are discussed in this paper. Experimental results show that the insertion loss and return loss of the switch are -1.50 dB and -10.4 dB at 22 GHz, respectively. When the switch is supplied a driving voltage of 13V, the isolation of the switch is -19.0 dB at 22 GHz.
URI: http://hdl.handle.net/11455/1783
其他識別: U0005-0308200713120300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.