Please use this identifier to cite or link to this item:
標題: 單軸長行程定位系統之控制研究
The Study on The Control of Long-Range Single-Axis Nanometer Positioning System
作者: 李信儀
Li, Sin-Yi
關鍵字: nanometer;奈米;velocity;DSP;linear guide;piezoelectric actuator;fuzzy control;速度;單晶片;線性滑軌;壓電致動器;模糊控制
出版社: 機械工程學系所
引用: [1]M. A. El-Sharkawi and Y. Guo ,“Adaptive Fuzzy Control of a Belt-Driven Precision Positioning Table,”Proceeding of the IEEE International on Electric Machines and Drives Conference IEMDC''03., Vol.3, pp.1504-1506 (2003). [2]F. J. Lin and P. H. Shen,“Robust fuzzy-neural-network control for two-axis motion control system based on TMS320C32 control computer, ”Proceedings of the IEEE International Conference on Mechatronics , Taipei ,Taiwan , pp.606-610 (2005). [3]G. Liu and Q. Guo ,“Model-based Disturbance Attenuation for Linear Motor Servo System,”Proceeding of the CES/IEEE 5th International on Power Electronics and Motion Control Conference IPEMC ''06. ,Vol. 2, pp.1-3(2006). [4]S.W. Tam and C. Cheung,“A High Speed, High Precision Linear Drive System for Manufacturing Automation,”Proceeding of the Sixteenth Annual IEEE on Applied Power Electronics Conference and Exposition APEC 2001. ,Vol. 1, pp.440 – 444(2001). [5]S. Verma , W. J. Kim, and H. Shakir,“Multi-Axis Maglev Nanopositioner for Precision Manufacturing and Manipulation Applications,”Proceeding of the IEEE Transactions on Industry Applications, Vol. 41, No. 5, pp.1159-1167 (2005). [6]Z. Zhipeng, M. Chia-Hsiang, “Six-Axis Magnetic Levitation and Motion Control,” Proceeding of the IEEE Transactions on Robotics, Vol. 23, No.2, pp.196-205(2007) [7]D. Chen and Y. Wei,“Study on Non-linearityControl of a Piezoelectric Nanoactuator,”Proceeding of the 5''h World Congress on Intelligent Control and Automation, Hangzhou, P.R., China, pp.1236-1240 (2004). [8]S. S. Ku, U. Pinsopon, S. Cetinkunt , and S. I. Nakajima,“Design, Fabrication, and Real-Time Neural Network Control of a Three-Degrees-of-FreedomNanopositioner ,”Proceeding of the IEEE/ASME Transactions on Mechanics, Vol. 5, No. 3, pp.273-280 (2000). [9]D. Bai, T. Ishii, K. Nakamura, S. Ueha, T. Yonezawa, and T. Takahashi, “An Ultrasonic Motor Driven by the Phase-Velocity Difference Between Two Traveling Waves,”Proceeding of the IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 51, No. 6, pp.680-685(2004). [10] Y. Egashira, K. Kosaka, , S. Takada, T. Iwabuchi ,T. Baba,S. Moriyama,T. Harada, K. Nagamoto , A. Nakada ,H. Kubota and T. Ohmi, “0.69 nm resolution ultrasonic motor for large stroke precision stage,”Proceedings of the 2001 1st IEEE Conference on Nanotechnology, pp.397 -402(2001). [11]R. J. Wai and J. D. Lee,“Intelligent Motion Control for Linear Piezoelectric Ceramic Motor Drive,”Proceeding of the IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 34, pp.2100 – 2111(2004). [12]R. J. Wai,“Robust control of linear ceramic motor drive with LLCC resonant technique,”Proceeding of the IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 50, pp.911–920(2003). [13]D. Koyama; T. Ide; J.R. Friend; K. Nakamura; S. Ueha,“An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails,” Proceedings of the IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.54, No.3 ,pp.597-604(2007) [14] W. H. Chen, D. J. Balance ; P.J. Gawthrop ; J. J. Gribble and J. O''Reilly ,“Nonlinear PID predictive controller,”Proceedings of the IEE on Control Theory and Applications, Vol. 146, Issue 6, pp.603-611(1999). [15]Y.X. Su, B.Y. Duan and C.H. Zheng,“Nonlinear PID control of a six-DOF parallel manipulator,”Proceeding of the IEE on Control Theory and Applications, Vol. 151, pp.95-102(2004). [16]K. Z. Tang; K. K. Tan; T. H. Lee and C. S. Teo,“Neural network-based correction and interpolation of encoder signals for precision motion control,”Proceeding of the 8th IEEE International Workshop on Advanced Motion Control AMC ''04, pp.499-504(2004). [17]R. J. Wai and K. H. Su“Supervisory control for linear piezoelectric ceramic motor drive using genetic algorithm,”Proceeding of the IEEE Transactions on Industrial Electronics, Vol. 53, pp.657–673(2006). [18]Y. P. Chen, D. L. Zhang, AI Wu., Z. D. Zhou and L.-Y. Liu,“ An Improved Fuzzy System For Position Control Of Permanent Magnet Linear Motor,” Proceedings of the 2005 International Conference on Machine Learning and Cybernetics , Vol. 5, pp.2731-2735(2005). [19]C. F. Hsu, C. M. Lin and T. T. Lee ,“Adaptive Fuzzy Sliding-mode Control for Linear Piezoelectric Ceramic Motor,” Proceeding of the 14th IEEE International Conference on FUZZ ''05, pp.507-512(2005). [20]Z. Z. Liu; F. L. Luo; Rahman and M.A.,“Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism,”Proceeding of the IEEE Transactions on Industrial Electronics, Vol. 52, pp.1357–1363(2005). [21]R. J. Wai and C. H. Tu,“Adaptive Grey Control for Hybrid Resonant Driving Linear Piezoelectric Ceramic Motor,”Proceeding of the IEEE Transactions on Industrial Electronics, Vol. 53, pp.640–656(2006). [22]楊家昇,精密進給系統驅動機構之設計研究,碩士論文,國立中興大學機械工程學系,台中 (2004)。 [23]黃政男,摩擦驅動定位系統之控制研究,碩士論文,國立中興大學機械工程學系,台中 (2006)。 [24]侯思吉,單軸長行程奈米定位系統之研究,碩士論文,國立中興大學機械工程學系,台中 (2006)。 [25]Physik Instrumente, “Designing with piezoelectrics: nanopositioning fundamentals”, September (2005). [26]Piezomechanik, “Piezo-mechanical and electrostrictive stack and ring actuators: product range and technical data”, January (2004). [27]Piezomechanik, “Piezo-mechanics: an introduction”, September (2003). [28]MicreE System,“Mercury 3500 Smart Encoder Systems”. [29]黃英哲、董勝源,TMS320C240原理與C語言控制應用實習,長高科技圖書,台中,(2003)。 [30]Texas Instruments,“Code Composer Studio User`s Guide,”SPRU328B,February (2000). [31]Texas Instruments,“TMS320C54X DSP Reference Set,”Vol.1,SPRU131F,(1999). [32]Physik Instrumente, “PZ 62E user manual”, December (2004). [33] S.T. Smith, and D.G. Chetwynd , Foundations of Ultraprecision Mechanism Design, Gordon and Breach Science Publishers S.A. (1994). [34] J. M. Paros, and L. Weisbord, “How to design flexure hinge”, Machine Design, Vol. 37, pp.151-157 (1965). [35]薛實福、李慶祥,精密儀器設計,清華大學出版社,新竹,pp.184-221 (1991)。 [36]王進德、蕭大全,類神經網路與模糊控制理論入門,全華科技圖書,台北,pp.135-212 (2005)。
研究目的在於使本定位系統之速度提昇至符合實際應用之進給速度。研究中藉由頻率與速度關係實驗確立兩者呈正相關,並測試出本研究中之最高操作頻率為5k Hz。而在控制方面,分為全速模式及微動模式,在全速模式中使用最高操作頻率做開迴路控制,在微動模式中則使用模糊控制作為補償之控制法則。

This study focuses on the velocity analysis for a long-range single-axis positioning system. First, the positioning system consists of driving mechanism, linear guide and digital signal processing (DSP) controller. In this case, the driving mechanism comprises piezoelectric actuator, leaf spring, and flexure hinge. Moreover, the positioning system inputs a sine wave to piezoelectric actuator to produce a periodic movement and feeds linear guide with a friction force.
The objective of this study is to increase the feeding speed for practical applications. It verifies that there is a positive correlation between frequency and velocity and the highest operating frequency is 5k Hz. For the control system, it can be divided into the high speed mode and the tiny movement mode. In the high speed mode, it uses the highest operating frequency for the open-loop control. On the other hand, it uses fuzzy control as compensation in the tiny movement mode for the close-loop control.
In final analysis, first, the experiment results show that the maximum stroke of the positioning system is 80mm, the average velocity is 6.53mm/s and the maximum velocity is 10.19mm/s. Second, the steady state error is less than 20nm and the minimum step size is 50nm of the positioning accuracy. Third, the life cycle of the driving mechanism is more than one million cycles.
其他識別: U0005-0508200715091700
Appears in Collections:機械工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.