Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1795
標題: 不同的截面積和加熱位置對熱管性能之影響
The effects of different cross section area and heating position on the performance of heat pipe
作者: 謝明宏
Hsieh, Ming-Horng
關鍵字: Heat Pipe;導熱管
出版社: 機械工程學系所
引用: 參考文獻 [1]. 趙晏佑,“嵌入式熱管效益之研究”國立成功大學工程科學系,碩士論文,1999年。 [2]. Wen-Hung Huang,“燒結式微熱管之製作與性能分析” 國立台灣大學機械工程學系,碩士論文,2000年。 [3]. 賴衍村,“熱管散熱效益之研究”國立成功大學工程科學系,碩士論文,2001年。 [4]. 王暉雄,“熱管散熱模組效能之探討”國立成功大學工程科學系,碩士論文,2002年 [5]. 林岳儒,“孔隙結構對燒結識熱導管性能之影響” 國立台灣大學材料科學與工程學系,碩士論文,2003年 [6]. 依日光,“熱管技術理論實務", 復漢出版社,民國八十七年四月。 [7]. 庄駿、張紅“熱管技術及其工程應用",化學工業出版社,公元2000年。 [8]. 黃問盈,“熱管與熱管換熱器設計基礎",中國鐵道出版社,公元1995年。 [9]. 伍祖璁、黃錦鐘譯,粉末冶金(Powder Metallurgy),1996年 [10]. P. Dunn and D. A. Reay, “Heat Pipes”, 3rd ed., Pergamon, New York, pp. 266-269, 1982. [11]. G. P. Peterson, A. B. Duncan and M. H. Weichold, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers”, Journal of Heat Transfer, Vol. 115, pp. 54-64, August 1993. [12]. F. M. Gerner, J. P. Longtin, H. T. Henderson, W. M. Hsieh, p. Ramadas, W. S. Chang, “Flow and Heat Transfer Limitations in Micro Heat Pipes", Topics in Heat Transfer, ASME 1992, Vol. 3, pp.99-104. [13]. J. P. Longtin, B. Badran, F. M. Gerner, “A One Dimensional Model of a Micro Heat Pipe During Steady-State Operation", HTD-vol.200,Heat Transfer on the Microscale, ASME 1992. [14]. Ma and Peterson, “Experimental Investigation of The Maximum Heat Transport In Triangular Grooves", Transactions of the ASME, Vol. 118,pp.740- 746, 1996. [15]. R. S. Gaugler, “Heat Transfer Devices”, US Patent 2350348, Appl. 21 December 1942, Published 6 June 1966. [16]. G. M. Grover, ”Evaporation-Condensation Heat Transfer Device”, US Patent 3229759, Appl. 2 December 1963, Published 18 January 1966. [17]. D. A. Pruzan, L. K. Klingensmith, K. E. Torrance and C. T. Avedisian, 1991, “Design of High-Performance Sintered Wick Heat Pipes,“ International Journal of Heat and Mass Transfer, vol. 34,no. 6, pp. 1417-1427. [18]. K. C. Leong and C. Y. Liu, 1997, ”Characterization of Sintered Copper Wicks Used in Heat Pipes,” Journal of Porous Materials, vol. 4, no. 4 pp. 303-308. [19]. Mochizuki, M., et al., “Hinged Heat pipes for Cooling Notebooks PCs”,IEEE,1997. [20]. Toth,J.,Dehoff,R., and Grubb,K., “Heat Pipes :The Silent Way to Manage Desktop Thermal Problem,” Thermacore America Inc, 1998. [21]. Hong Xie ,“The Use of Heat Pipe in Personal oomputers,”InterSociety Conference on Thermal Phenomena,1998. [22]. Y. Xuan, Y. Hong and Q. Li,“Investigation on Transient Behaviors of Flat Plate Heat Pipes,” Experimental Thermal and Fluid Science, vol. 28, no. 2-3, pp 249-255 , 2004. [23]. T. Nguyen, M. Mochizuki, K. Mashiko, and Y. Saito, “Use of Heat pipe/Heat sink for Thermal Management of High Performance CPU’s”,Sixteen IEEE SEMI-THERM Symposium, pp. 76-79, 2000. [24]. Shung-Wen Kang , Sheng-Hong Tsai, Hong-Chih Chen,“ Fabrication and Test of Radial Grooved Micro Heat Pipes" ,Applied Thermal Engineering 22 (2002) 1559–1568 [25]. Chi, S.W., Heat Pipe Theory and practice, McGraw-Hill, New York, 1976. [26]. Peterson, G,P., An Introduction to Heat Pipe, Wiley , New York, 1994. [27]. A. Faghri, Heat Pipe Science and Technology, 1995, ISBN 1-56032-383-3, Taylor & Francis. [28]. M.Mochizuki, Y.Saito, K.Goto,T.Nguyen, P.Ho, M.Malcolm, and M.P.Morando, “Hinged Heat Pipes for Cooling Notebook PCs”, Semiconductor Thermal Measurement and Management Symposium, 1997, Thirteenth Annual IEEE,1997,pp.64-72. [29]. Measuring Temperature with Thermocouples – a Tutorial, National Instruments, November, 1996. [30]. http://www.forcecon.com
摘要: 
摘要
本研究首先以相同製程參數製作外徑6mm,長度187mmm與300mm的燒結式導熱管。並藉由理論與實驗兩種方式,探討不同管長與圓直管經過機械加工(壓扁、彎管、彎管再壓扁)之後,於標準測試下的最大熱傳量。研究結果顯示最大熱傳量會隨著有效長度的減小、截面積的增加與機械加工的製程的減少而增加。有鑒於此,本文利用置中加熱、雙邊冷卻的量測方式,探討導熱管在不同安裝方式的最大熱傳量。研究結果顯示:導熱管於中段加熱,最大熱傳量會提升2.75~3倍。提高熱傳性能有兩項重要因素:其一為加熱位置居中,導致有效長度均分為左右兩端,所以工作流體可以迅速地回流蒸發端;其二為中段加熱導熱管,可以視為在一個發熱源上,安裝兩支有效長度較短的導熱管輸出熱源功率。因此,導熱管採取置中加熱,兩端冷卻的散熱性能優於標準(Qmax)的散熱性能。

Abstract
In the beginning of this study, I used the same production process parameters to produce two kinds of sintered heat pipes: one is of 6mm in diameter and 187mm in length and the other is of 6mm in diameter and 300mm in length. Then, through theoretical and experimental methods, I examined these two sintered heat pipes'maximum amount of heat transfer under standard testes after they were mechanically
processed in three ways: flattened, bent, and bent with flattened. The results showed that the maximum amount of heat transfer would increase with the reduction of effective length and increase of cross section area as well as the reduction of mechanical processing.
In view of the results, I examined how the maximum amount of heat transfer would be affected by different installation by means of heating the middle part and cooling the two ends of pipes. The results showed that the maximum heat transfer capacity will increase by 2.75~3 times when the middle part of the pipes was heated.
There are two explanations for such a phenomenon. Firstly, when the middle part of the pipe is heated, the effective length is equally divided into two and therefore fluid
can quickly go back to the evaporation points. Secondly, heating the middle part of heat pipe can be regarded as heating source which is installed with two shorter heat pipe to output heat. Therefore, the heat pipes' thermal evaporation is superior to standardized thermal evaporation when they are heated in the middle part and cooled at the two ends.
URI: http://hdl.handle.net/11455/1795
其他識別: U0005-0608200712215900
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.