Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17970
標題: 摻雜鋁、銻之氧化鋅奈米結構成長與特性分析
Growth and characterization of aluminum、antimony doped ZnO nanostructures
作者: 方瓊菀
Fang, Chiung-Wan
關鍵字: ZnO;氧化鋅;Al doped;Sb doped;Field emission;Photoluminescence;鋁摻雜;銻摻雜;電子場發射;光激發光
出版社: 應用數學系所
引用: 1.科學人雜誌,奈米特刊,特刊1號 (2003) 122-135. 2. http://nanopedia.case.edu/image/nanoscale.jpg 3. http://nano.nstm.gov.tw/01conception/conception02.asp 4. W. Barthlott, and C. Neinhuis, Planta 202 (1997) 1. 5. K. Akamatsu , and S. Deki, J. Mater. Chem., 8 (1998) 637. 6. S. Deki, K. Sayo, T. Fujita, A. Yamada, and S. Hayashi, J. Mater. Chem., 9 (1999) 943. 7. Alivisatos, A. P., Science, 271 (1996) 933. 8.尹邦躍,奈米時代 nano,五南出版社(2002). 9.楊智惠,黃耿祥,王英基和林裕城,科學發展, 422 (2008) 46. 10. S. Iijima, Nature, 354 (1991) 56. 11. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Fullerenes and Carbon Nanotubes, Academic press, San Diego, 1995. 12. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T.J. Steiner, J. Vac. Sci. Technol . B, 22 (2004) 932. 13. Y. Li et al., Appl. Phys. Lett., 76 ( 2000) 2011 . 14. J. Hu et al., Acc. Chem. Res., 32 (1999) 435. 15. J. B. Baxter, and E. S. Aydil, Appl. Phys. Lett., 86 (2005) 053114. 16. J. M. Wu, H. C. Shih, W. T. Wu , Y. K. Tseng, and I. C. Chen, J. crystal growth, 281 (2005) 348. 17. Y. J. Hsu and S. Y. Lu, J. Phys. Chem. B 109 (2005) 4398. 18. K.A. Bertness, N.A. Sanford, J.M. Barker, J.B. Schlager, A. Roshko, A.V. Davydov, and I. Levin, J. Elect. Mater., 35 (2006) 576. 19. C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng ,and I. C. Chen, J. Electrochem. Soc., 152 (2005) G378. 20.馬遠榮,科學發展, 382 (2004) 74. 21.蔡信行,孫光中,奈米科技導論,新文京出版社(2004). 22.郭正次,朝春光,奈米材料科學,全華科技(2004). 23.高逢時, 科學發展, 386 (2005) 67. 24. Ph. Buffat, and J. P. Borel, Physical Review A, 13 (1976) 2287. 25. R. Kubo, J. Phys. Soc. Japn. 17 (1962) 975 26. http://nano.nstm.gov.tw/01conception/conception02_03.asp 27. http://www.ntrc.itri.org.tw/dict/content.jsp?newsid=231 28. A. P. Chatterjee, P. Mitra, and A.K. Mukhopadhyay, J. Mater. Sci., 34 (1999) 4225. 29. H. Xu, X. Liu, D.Cui , and M. Li, M. Jiang, Sensors and Actuators B 114 (2006) 301. 30. Li. J. Bie , X. N. Yan, J. Yin, Y. Q. Duan, and Z. H. Yuan, Sensors and Actuators B 126 (2007) 604. 31. J. B. Baxter, and E. S. Aydil, Appl. Phys. Lett., 86 (2005) 053114. 32. S. S. Kurbanov , G.N. Panin , T.W. Kim , and T.W. Kang, Optics Commun. 276 (2007) 127 33. S. J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T.J. Steiner, J. Vac. Sci. Technol. B, 22 (2004) 932. 34. L. Yang, G. Wang, C. Tang, H. Wang, and L. Zhang, Chem. Phys. Lett., 409 (2005) 337. 35. S. Y. Bae, H. W. Seo, and J. Park, J. Phys. Chem. B, 108 (2004) 5206. 36. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett., 83 (2003) 3401. 37. Y. J. Hsu, and S. Y. Lu, J. Phys. Chem. B 109 (2005) 4398. 38.許浩承,以水熱法成長氧化鋅奈米線,國立清華大學,碩士論文(2004). 39. B. Meyer, and D. Marx, Phys. Rev., 67 (2003) 035403. 40. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, materialstoday , June (2004) 34. 41. http://www.cradley-crystals.com/CCinit.php?id=productso_1 42. H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng,, B. K. Tay, Cryst. Growth, 268 (2004) 596. 43. M. H. Huang, S. Mao, H.Feick, H.Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science, 292 (2001)1897. 44. K. J. Kim, and Y. R. Park, Appl. Phys. Lett., 78 (2000) 475. 45. C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett., 84 (2004) 1540. 46. R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Appl. Phys. Lett., 88 (2006) 023111. 47.楊明輝,金屬氧化物透明導電材料的基本原理,工業材料(2001). 48. Y. Harada and S. Hashimoto, Phys. Rev. B 68 (2003) 045421. 49. K. M. Lee, K. H. Park, K. H. Koh, S. Lee, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 16 - 19, 2007, Bangkok, Thailand. 50. D. R. Vij and N. Singh, Luminescence and Related Properties of II-VI Semiconductors, Nova Science Publishers, N. Y. (1998). 51. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. G. Kong, Joural of Luminescence 99 (2002) 149. 52. I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev. B 69 (2004) 245401. 53. D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J.Xu, and W. K. Chan, Appl. Phys. Lett., 85 (2004) 160. 54. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys.,79 (1996) 7983. 55. Bixia Lin, Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett., 79 (2001) 943. 56.機械工業雜誌, 302期,太陽光電製程設備技術專輯. 57. S. S. Brenner and G. W. Sears, Acta Metallurgica, 4 (1956) 268. 58. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89. 59.陳貴賢,吳季珍,物理雙月刊, 23 (2001). 60. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater., 13 (2003) 9. 61. P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, Chem. Mater.16 ( 2004) 5133. 62. T. Terasako, and S. S. hirakat, J. J. of Appl. Phys. 44 (2005) L1410. 63. Z. Fan, D. Dutta, C. J. Chien, H. Y. Chen, and E. C. Brown, Appl. Phys. Lett., 89 (2006) 213110. 64. C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim, J. S. Ha, Appl. Surf. Sci., 253 (2006) 1758. 65. J. C. Lee, I. C. Leu, and M.H. Hon1, Chem. Lett.,37 (2008) 706. 66. Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Chem. Phys., 123 (2005) 134701. 67. V.A. Kaprpina, V.I. Lazorenko, C.V. Lashkarev, et al., Cryst. Res. Technol., 39 (2004) 980. 68. 中國紡織報, http://www.sdnano.com/paper/zno2paper.htm 69. X. Wang, J. Zhou, J. Song, J.Liu, N. Xu, and Z. L. Wang, Nano Latters 6 (2006) 2768. 70. http://optics.org/cws/Articles/ViewArticle. 71. Z. L. Wang, and J. Song, Science 312 (2006) 242. 72.方瓊菀,中空環狀版之振動控制,中興大學,碩士論文(2002). 73. Z. L. Wang, X. Y. Kong, D. Puxian Gao, W. L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater., 14 (2004) 943. 74. J. M. Wu, W. T. Wu and H.C. Shih, J. Electrochem. Soc., 152 (2005) G613. 75.黃惠忠,奈米材料分析(2004). 76.儀器總覽,材料分析儀器. 77. Introduction to infrared and Raman spectroscopy, New York: Academic Press, John R. Ferraro, Kazuo Nakamoto, Chris W. Brown. 78. D. A. Skoog, J. J. Leary, Principles of Instrumental Analysis, Fourth Edition, Harcourt Brace Joranovich Colledge Publisher, 1992. 79. R. H. Fowler, and L. W. Nordheim, Proc. R. Soc. London, A119 (1928) 173. 80.陳聖元,呂助增,李明謁,陳麒麟,科儀新知, 26 (2005) 63. 80. C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, J. Electrochem. Soc., 152 (2005) G378 81. W. J. Li, E. W, Shi, W, Z. Zhong, Z. W. Yin, J. Crystal Growth 203 (1999) 186. 82. H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, J.Cryst. Growth, 268 (2004) 596. 83. A. V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Luminesc. 1715 (2000) 87. 84. B. Lin, Z. Fu, Y. Jia, and G. Liao:J. Electrochem. Soc. 148 (2001) G110. 85. J. M. Calleja, and M. Cardona:Phys. Rev. B, 16 (1977) 3753. 86. W. J. Shen, J . Wang, Q. Y. Wang, Y. Duan, and Y. P. Zeng, J. Phys. D:Appl. Phys. 39 (2006) 269. 87. Y. Zhang, B. Lin, Z. Fu, C. Liu , and W. Han, Opt. Mater. 28 (2006) 1192. 88. L. Shen, N. Bao, K. Yanagisawa, K. Domen, A. Gupta, and C. A Grimes, Nanotech. 17 (2006) 5117. 89. L. X. Xu, S. P. Lau, J. S. Chen, G. Y. Chen, and B. K. Tay: J. Cryst. Growth 223 (2001) 201 90. Y. Yang, J. Qi, Q. Liao, Y. Zhang, L. Tang, and Z. Qin, J. Phys. Chem. C, 112 (2008) 17916. 91. M. Rajalakshmi and A. K. Arora, J. Appl. Phys. 87 (2000) 2445. 92. M. Tzolov, N. Tzenov, D. D. Malinovska, C. Pizzuto, G. Vitali, G. Zollo, and I. Ivanov, Thin Solid Films 379 (2000) 28. 93. C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, J. Electro. Soc., 152 (2005) G378. 94. Binary alloy phase diagrams (electronic resource), Materials Park, Ohio, ASM International, Version 1.0 (c1996) p.240. 95. F. Decremps, J. Pellicer-Porres, A.M. Saitta, J-C. Chervin, and A. Polian: Phys. Rev. B, 65 (2002) 092101. 96. H. He, F.Zhuge, Z. Ye, L. Zhu, B. Zhao,and J. Huang, J. Phys. D:Appl. Phys., 39 (2006) 2339. 97. R. Deng, Y. Zou, Z. Chen, G. Jiang, and H. Tang, Mater. Lett., 61 (2007) 3582. 98. K. M. Lee, K. H. Park, K. H. Koh, S. Lee, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 16 - 19, 2007, Bangkok, Thailand. 99. R. H. Fowler, L. W. Nordheim. Proc. R. Soc. London, Ser. A, 119 (1928) 173. 100. H. Araki, T. Katayama, and K. Yoshino, Appl. Phys. Lett., 79 (2001) 2636. 101. J. M. Bonard, J. P. Salvetat, T. Stöckli, W. A. de Heer, L. Forró , and A. Châtelain, Appl. Phys. Lett.,73 (1998) 918. 102. J. M. Wu, Han C. Shih, Wen-Ti Wu, : Chem. Phys. Letts. 413 (2005) 490. 103. Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, Appl. Phys. Lett., 86 (2005) 203115. 104.黃宣宜,光連雙月刊, 39 (2002) 57. 105. X. J. Wang, J. F. Tian, L. H. Bao, C. Hui, T. Z. Yang, C. M. Shen, H. J. Gao, F. Liu, and N. S. Xu, J:Appl. Phys. 102 (2007) 014309. 106. C. X. Xu, X. W. Sun, B. J. Chen :Appl. Phys. Lett. 84 (2004) 1540. 107. L. H. Chen, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C. Shih, T. C. Lin, F. S. Shieu, K. J. Chen, H. C. Cheng : Appl. Phys. Lett. :82 ( 2003) 4334. 108. Y. W. Ryu, Y. J. Tak, and K.Yong: Nanotechnology 16 (2005) S370. 109. Q. H. Li, T. Gao, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 86 (2005) 123117. 110. O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J.M. Wessels, NanoLetter 3 (2003) 1097. 111. Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche, S. J. Pearton, Appl. Phys. A 80 (2005) 497. 112. C. L. Hus, S. J. Chang, Y. R. Lin, T. S. Lin, S. Y. Tsai, T. H. Lu, I. C. Chen, Chem. Phys. Lett., 416 (2005) 75. 113. H. He, F.Zhuge, Z. Ye, L. Zhu, B. Zhao,and J. Huang, Appl. Phys., 39 (2006) 2339. 114. C. H. Zang, D.X. Zhao, Y. Tang, Z. Guo, J.Y. Zhang, D.Z. Shen, Y.C. Liu, Chem. Phys. Lett., 452 (2008) 148. 115. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Letts., 83 (2003) 1974. 116. http://www.lasurface.com/accueil/index.php. 117. D. Szczuko, J. Werner, S. Oswald, et al., Appl. Surf. Sci. 179 (2001) 301. 118. A. Barbaro, S. Larrondo, S. Duhalde, et al., Appl. Catal. A 193 (2000) 277. 119. B. L. Zhu, C. S. Xie, D. W. Zeng, W. L. Song, A. H. Wang, Mater. Chem. Phys., 89 (2005) 148. 120. Oliver WC, Pharr GM, J. Mater. Res., 7 (1992) 1564. 121. James M. Gere, Stephen P. Timoshenko, Mechanics of materials, 3rd. ed. 122. H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum, New York, 1969.
摘要: 
熱蒸鍍法是一種簡單且直接的方法,經常於合成良好晶格結構之摻雜材料被使用。因此,我們將採用熱蒸鍍法來合成氧化鋅奈米結構。在本論文中,使用熱蒸鍍法合成一系列氧化鋅奈米結構如:奈米線、奈米帶、奈米柱在矽基板、氧化鋁基板與不銹鋼基板上,並對合成之氧化鋅奈米結構的成長機制、結構、光電特性以及電子場發射做一簡單說明。藉由氣相-固相(vapor-solid, VS)的成長機制,我們成功地在650℃合成氧化鋅奈米結構,透過X-射線繞射光譜儀(XRD)的分析,成長的氧化鋅奈米結構是單晶的六方纖鋅 (wurtzite)結構。藉由鋁膜預鍍層與Zn-Sb摻混兩種方式,來成長氧化鋅鋁與氧化鋅銻的奈米結構,並且對其特性進行分析。
我們利用直流(DC)濺鍍機預鍍一層鋁的薄膜晶種層在矽基板上,並且以 Zn粉作為蒸氣的來源,成功地在650℃將氧化鋅鋁奈米結構合成在矽基板上,由XRD與高解析穿透式電子顯微鏡(high resolution transmission emission microscopy , HR-TEM)的結果分析,氧化鋅鋁奈米結構是沿著[001]軸方向成長的單晶wurtzite結構,說明氧化鋅鋁奈米結構有良好的晶格特性。高角度環狀暗視野(high angle annular dark field, HAADF)與拉曼光譜(Raman)以及能量散佈光譜儀(energy dispersive X-ray spectroscopy, EDS)的結果顯示,鋁元素已經成功地摻雜到氧化鋅奈米結構中。因此,推論我們利用預鍍的方式可以幫助金屬鋁摻雜到氧化鋅奈米結構中。
其次,利用鋅粉摻雜銻粉,藉由鋅-銻共熔點的方式,我們在600℃將氧化鋅銻奈米結構成長在不鏽鋼與氧化鋁基板上,其長度為數十微米,直徑可以小至10~30nm,其結構一樣是單晶的wurtzite的結構,成長方向沿著[001]軸。由拉曼光譜與EDS的結果顯示,銻已經藉由共熔析出的方式進入了氧化鋅奈米晶格。而氧化鋅銻奈米結構,經由UV感測的結果顯示,光電流與暗電流比值約為48.8。
經由PL(photoluminescence)的量測結果發現,氧化鋅鋁奈米結構在382nm的鋒值位置和氧化鋅在385nm鋒值位置作比較,明顯發現有藍位移的現象;而氧化鋅銻(376nm)相對於氧化鋅(378nm)奈米結構,亦有藍位移的現象。
我們針對氧化鋅鋁、氧化鋅銻與氧化鋅奈米結構之場發射特性進行討論。成長在矽基板上的氧化鋅鋁與氧化鋅奈米結構,其場發射起始電場分別為3.8與5 V/μm,電流密度為1μA/cm2;門檻電場分別為25 與 47 V/μm,場發射電流密度為1mA/cm2。而成長在不鏽鋼基板上的氧化鋅銻與氧化鋅奈米結構,其起始電場分別為3.85與15.5 V/μm,電流密度為1μA/cm2;門檻電場分別為11.8 與 26.7 V/μm,門檻電場電流密度為1 mA/cm2。證明藉由摻雜可以改善氧化鋅奈米結構的場發射效果。
鋁、銻等元素摻雜到氧化鋅晶格對FE、UV、PL的影響效應與電氣性能的改善機制都將在本論文中說明。此外,摻雜對於氧化鋅材料結構的影響也將在本論文中討論。所有實驗結果顯示,我們的氧化鋅奈米線擁有良好的品質,而且氧化鋅、氧化鋅摻雜鋁及摻雜銻奈米線製程簡單,具有開發成FEDs光電元件的潛力。

Thermal evaporation is often applied to synthesize the highly crystalline nanostructures. The method is simple and straightforward, enabling its integration with the doping process. Therefore, we will synthesize ZnO nanostructures using thermal evaporation. In this study, zinc oxide (ZnO) nanostructures such as nanowires, nanobelts and nanorods have been synthesized on silicon、Al2O3 and stainless steel substrates by thermal evaporation. The growth mechanism、structure、photoelectric properties and field emission of ZnO nanostructures were investigated. This growth mechanism was governed by vapor-solid (VS). ZnO nanostructures were successfully synthesized by thermal evaporation method at 650℃. X-ray diffraction (XRD) confirmed that ZnO nanostructures are single crystal wurtzite structure. Furthermore, ZnO-doped Al and ZnO-doped Sb nanostructures were synthesized by pre-depositing with an Al thin layer on substrates and Zn powder mixed Sb powder with Zn-Al has a eutectic, respectively. Properties of the ZnO nanostructures were investigated.
We report a simple method whereby an Al film was pre-deposited on Si substrate by DC sputtering with Zn powder acting as the vapor source. ZnO:Al nanostructures were synthesized on silicon substrate at 650℃. High resolution transmission emission microscopy (HR-TEM) and XRD confirmed that ZnO:Al nanostructures are single crystal wurtzite structure and grown along [001] direction.
It also confirmed good crystal property of ZnO:Al nanostructures. High angle annular dark field (HAADF)、Raman and energy dispersive X-ray spectroscopy (EDS) showed that the Al element was highly scattered and dispersed throughout the ZnO nanostructures. Therefore, by pre-deposited an Al layer on the substrate can help the metal Al dopant into the ZnO nanostructures.
Synthesis of ZnO:Sb nanostructures used Zn powder mixed Sb powder with Zn-Al has a eutectic at binary phase. The single-crystalline of ZnO:Sb nanostructures were synthesized at 600℃ on stainless steel and Al2O3 substrates. ZnO:Sb singal nanostructures were grown along the [100] axis. The dimensions of the ZnO:Sb nanostructures are about 10-30 nm in diameter and up to several ten microns in length. Raman and EDS displayed that the metal Sb was dopant into the ZnO crystal through Zn-Sb alloy-evaporation deposition. Using UV photocurrent measurement, it also showed that light current to dark current ratio of ZnO:Sb nanostructures was about 48.8.
Photoluminescence (PL) measurement showed a blue-shift emission peak was found in ZnO:Al nanostructures (382nm) in contrast to that of ZnO nanostructures (385nm). The same way revealed that the ZnO:Sb and ZnO nanostructures have a blue band emission at 376 nm and 378 nm, respectively. The result also showed that a blue-shift emission peak was found in ZnO:Sb compare to ZnO nanostructures.
The field emission properties of ZnO:Al and ZnO:Sb compare to ZnO nanostructures were also investigated, respectively. The turn-on field of ZnO:Al and ZnO nanostructures on silicon substrate were found to be 3.8 and 5 V/μm, respectively; the current density was 1 μA/cm2. The thresholds field for ZnO:Al and ZnO nanostructures were estimated around 25 and 47 V/μm, respectively; the current density was 1 mA/cm2. About the measurement of ZnO:Sb and ZnO nanostructures on stainless steel substrate were found to be 3.85 and 15.5 V/μm, respectively, the current density was 1μA/cm2. The thresholds field for ZnO:Sb and ZnO nanostructures were estimated around 11.8 and 26.7 V/μm, respectively; the current density was 1mA/cm2.
In this thesis, the influences of Al and Sb doped into the ZnO crystal were investigated by FE, UV, PL and gas sensor. In addition, the improvements of ZnO nanostructures on the structural were discussed. All the results indicated the quality of our ZnO nanostructures is good. A process which is simple and easy to scale-up has been employed to synthesize the ZnO:Al, ZnO:Sb and ZnO nanostructures. Accordingly it is a potentially useful process for fabricating FEDs devices.
URI: http://hdl.handle.net/11455/17970
其他識別: U0005-1102200905272700
Appears in Collections:應用數學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.