Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorTai, Yao-Weien_US
dc.identifier.citation[1] [2] K. E. Petersen, “Silicon as a mechanical material”, Proceeding of the IEEE, Vol. 70, No. 5, pp. 420-457, 1982. [3] J. M. Lysko, R. S. Jachowicz and M. A. Krzycki, “Semiconductor pressure sensor based on FET structure”, IEEE Transactions on Instrumentation and Measurement, Vol. 44, pp. 787-790, 1995. [4] O. Paul and H. Baltes, “Novel fully CMOS-compatible vacuum sensor”, Sensors and Actuators A, Vol. 46-47, pp. 143-146, 1995. [5] L. Svensson, J. A. Plaza, M. A. Benitez, J. Esteve and E. LoraTamayo, “Surface micromachining technology applied to the fabrication of a FET pressure sensor”, J. Micromesh. Microeng., Vol. 6, pp. 680-836, 1996. [6] B. Folkmer, P. Steiner and W. Lang, “A pressure sensor based on a nitride membrane using single crystalline piezoresistors”, Sensors and Actuators A, Vol. 2, No. 25-29, pp. 574-577, 1996. [7] M. Pedersen, M. G. H. Meijerink, W. Olthuis and P. Bergveld, “An IC-compatible polyimide pressure sensor with capacitive readout”, Sensors and Actuators A, No. 63, pp. 163-168, 1997. [8] E. Hynes, M. O’Neill, D. McAuliffe, H. Berney, W. A. Lane, G. Kelly and M. Hill, “Development and characterisation of a surface micromachined FET pressure sensor on a CMOS process”, Sensors and Actuators A, Vol. 76, pp. 283-292, 1999. [9] E. Hynes, P. Elebert, M. O’Neill, H. Berney, W. A. Lane, G. Kelly and M. Hill, “Development of an FET pressure sensor model and use to predict sensor behavior as a function of electrode geometry”, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, pp. 185-188, 2000. [10] H. Berney, M. Hill, D. Cotter, E. Hynes, M. O. Neill and W. A. Lane, “Determination of the effect of processing steps on the CMOS compatibility of a surface micromachined pressure sensor”, J. Micromech. Microeng., Vol. 11, pp. 402-408, 2001. [11] E. Hynes, P. Elebert, D. McAuliffe, M. O’Neill, W. A. Lane, H. Berney, M. Hill and A. MaThewson, “The CAP-FET, a scaleable MEMS sensor technology on CMOS with programmable floating gate”, Internationatinal Electron Devices Meeting Technical Digest, pp. 41, 2001. [12] S. Guo, J. Guo and H. K. Wen, “Amonolithically integrated surface micromachined touch mode capacitive pressure sensor”, Sensors and Actuators A, No. 80, pp. 224-232, 2002. [13] S. J. Ryszard and M. A. Zbigniew, “FET pressure sensor and iterative method for modeling of the device”, Sensors and Actuators A, Vol. 97-98, pp. 369-378, 2002. [14] C. Ravariu, F. Ravariu, A. Rus, D. Dobrescu, L. Dobrescu, C. Popa and I. Chiran, “A new job for the pseudo-MOS Transistor:working in the pressure sensors field”, International Conference on Electronics Circuits and Systems, Vol. 1, pp. 1796-1799, 2002. [15] H.K. Trieu, N. Kordas and W. Mokwa, “Fully CMOS compatible capacitive differential pressure sensors with on-chip programmabilities and temperature compensation”, Proceeding of IEEE, Vol. 2, pp. 1451-1455, 2002. [16] S. Buschnakowski, A. Bertz, W. Brauer, S. Heinz, R. Schuberth, G. Ebest and T. Gessner, “Development and characterisation of a high aspect ratio vertical FET sensor for motion detection”, International Conference Transducers Solid-State Sensors Actuators and Microsystems, Vol. 2, pp. 1391-1394, 2003. [17] C. L. Dai, C. S. Chang and Y. C. Lee, “Capacitive micro pressure sensors with underneath readout circuit using a standard CMOS process”, Journal of the the Chinese Institute of Engineers, Vol. 26, pp. 237-241, 2003. [18] L. J. Yang, C. C. Lai, C. L. Dai and P. Z. Chang, “A piezoresistive micro prssure sensor fabricated by commercial DPDM CMOS process”, Tamkang Journal of Science and Engineering, Vol. 8, No. 1, pp. 67-73, 2005. [19] H. H. Wang, W. C. Hsui, W. H. L. Wei, J. L. Yang and L. C. Dai, “Micro pressure sensors of 50μm size fabricated by a standard CMOS foundry and a novel post process”, IEEE International Conference Micro Electro Mechanical Systems, pp. 578-581, 2005. [20] K. M. Sung and L. Yusuf, CMOS digital integrated circuits analysis and design, McGraw-Hill, 2004. [21] S. Timoshlnko and S. K. Woinowsky, Theory of plates and shells, pp. 114-204, McGraw-Hill, 1959. [22] H. Reismann, Elastic Plates:theory and application, pp.115-120, Wiley, 1988. [23] C. R. Liu, and J. L. Chen, CMOS device physics and process integration : theory practice & practice, Wunan, 2006. [24] T. Someya, “Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications”, IEEE International Electron Devices Meeting, pp. 8, 2003. [25] T. Someya, H. Kawaguchi and T. Sakurai, “Cut-and-paste organic FET customized ICs for application to artificial skin”, IEEE International Solid-State Circuits Conference, Vol. 1, pp. 288-529, 2004. [26] Z. Zhang, R. Yue and L. Liu, “The application of double-gate MOSFET mixer in digital pressure sensor”, International Conference Solid-State and Integrated Circuits Technology, Vol. 3, pp. 1796-1799, 2004. [27] H. Kawaguchi, T. Someya, T. Sekitani and T. Sakurai, “Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin”, IEEE Journal of Solid-State Circuits, Vol. 40, pp. 177-180, 2005. [28] 莊達人,VLSI 製造技術,高立圖書有限公司,2000年。 [29] 行政院國家科學委員會,微機電系統技術與應用,精密儀器發展中心出版,2003年。 [30] 楊志偉,含感測電路的整合型微壓力感測器,國立中興大學機械研究所碩士論文,2006年。zh_TW
dc.description.abstractThis study presents a FET (field effect transistor) micro pressure sensor manufactured by the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The benefits of the pressure sensor are easy post-process, small area, low cost, and good performance. The gate of the transistor, which is a dynamic structure, is adopted as the membrane of the pressure, and the gate-source voltage is a linear output related to the pressure when keeping constant current in the channel. The pressure sensor needs a post-process to release the membrane and seal etch-holes. The post-process utilizes wet etching to remove sacrificial layers, which are stacked layers formed from metal and via layers, to suspend the membrane of pressure sensor. Then, LPCVD parylene is used to seal the etch-holes of pressure sensor. Besides, this circuits realize a simple method to convert the current variation of the pressure sensors into the voltage output. Differential-pairs-input opera-tional amperifier has a differential- pair-mode -gain(Ad) of 40dB and a phase-margin of 60. The sensitivity of the pressure sensors are 0.032mV/kPa in pressure range of 0-500kPa.en_US
dc.description.abstract本文利用CMOS-MEMS技術製作FET微壓力感測器,並整合積體電路。其後製程處理分為兩個階段,先以濕式蝕刻掏空金屬犧牲層,使得薄膜懸浮出來,再利用高分子Parylene封裝蝕刻孔,此微感測器以電流變化方式的原理,達到感測的效果,積體電路部分則利用電路將MOSFET的電流放大轉換為電壓訊號。 此感測器具有以下特點:(1)利用電壓控制電阻的優點,藉以調節閘極電壓改變通道電阻,使得感測器通道電阻具有可調性;(2)應用MOS閘極作為薄膜作動,當Vgs固定不變,通道電流會隨著壓力產生線性變化;(3)使用選擇性高之濕蝕刻溶液移除犧牲層鋁金屬;(4)選用LPCVD高溫裂解低溫沉積,低楊氏系數之高分子薄膜封裝感測單元。 讀出訊號部份係以一簡單之感測電路,應用一差動放大增益約(Differential Pair Gain) >40db以及相位邊際增益(PM)>60°,外加直流偏壓於閘極薄膜上Vgs=3V時,其壓力測量範圍為0-500kPa,靈敏度約0.032mV/kPa。zh_TW
dc.description.tableofcontents誌謝 i 中文摘要 ii Abstract iii 表目次 vi 圖目次 vii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機 5 第二章 壓力計的設計與分析 6 2.1 壓力計的構造 6 2.2 MOSFET原理 10 2.3 板的力學分析 14 2.4 結構模擬 17 2.5 電路模擬 24 第三章 後製成流程 34 第四章 實驗結果 44 4.1 壓力測試設備架設 44 4.2 壓力感測器量測結果 46 4.3 結果與討論 53 第五章 方形FET微壓力感測器 55 5.1 方形壓力計的構造 55 5.2 方形板的力學分析 57 5.3 方形板的模擬分析 59 5.4 方形壓力計的製作 64 5.5 方形壓力計量測結果 68 5.6 討論 71 第六章 結論與未來展望 72 附錄A.Hspice檔案 73 附錄B.聚對二甲基苯沉(Parylene Deposition) 76 附錄C.矩形薄膜變形推導 79 參考文獻 81zh_TW
dc.subjectpressure sensoren_US
dc.subjectreadout circuitsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:機械工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.