Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18040
DC FieldValueLanguage
dc.contributor蕭勝彥zh_TW
dc.contributor蕭鴻貴zh_TW
dc.contributor.advisor李源泉zh_TW
dc.contributor.author張峻國zh_TW
dc.contributor.authorChang, Chun-Kuoen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:02:45Z-
dc.date.available2014-06-06T07:02:45Z-
dc.identifierU0005-3006200815101600zh_TW
dc.identifier.citation[1] Robert B. Ash, “Probability and Measure Theory”, 2nd ed., San Diego :Harcourt/ Academic Press,c2000. [2] Francesco Altomare & Michele Campiti, “Korovkin-type Approximation Theory and Its Applications”, Berlin ;W. de Gruyter, New York, 1994. [3] Juan Hernandez Guerra & Daniel Cardenas-Morales, Qualitative Korovkintype results on almost convergence, Monografias del Semin. Matem. Garcia de Galdeano. 27: 2003, 331-336. [4] Chifung Li, Some results about sσ-limit and a representation theorem of sequences in a reflexive Banach space, master dissertation of NCU in Taiwan, 2002. [5] Y.-C. Li, Almost convergence of sequences in a Banach spaces in weak, strong, and absolute senses, Taiwanese journal of mathematics Vol. 10(1) (2006), 209-218. [6] Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia Math. 121 1996, 207-219. [7] Sanny Li, Chifung Li, and Yuan-Chuan Li, On σ-limit and aσ-limit in Banach spaces. Taiwanese journal of mathematics Vol. 9(3) (2005) 359-371. [8] G. G. Lorentz, A contribution to the theory of divergent sequence, Acta Math. 80 1948, 167-190. [9] P. P. Korovkin, “Linear Operators and Approximation Theory”, Hindustan Publishing Corp., Delhi, India, 1960. [10] J.A. De Reyna, “Pointwise Convergence of Fourier Series”, New York: Berlin; Springer, c2002. [11] Walter Rudin, “Real and Complex Analysis”, 3rd ed., New York: McGraw-Hill, 1987. [12] Kˆosaku Yosida, ”Functional Analysis”, 6th ed., New York: Springer-Verlag Berlin Heidelberg, 1980. [13] Z. Ditzian, V. Totik, “Moduli of Smoothness“, New York: Berlin; Springer-Verlag, 1987.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/18040-
dc.description.abstract本篇論文主要目的是研究關於廣義極限 σ-limit 的 Korovkin type 近似定理的結果。我們除了給予σ-limit 及 aσ-limit 的一些基本結果。另外對於σ-limit 的 Korovkin type 近似定理,我們分成 pointwise, weakly convergence and norm convergence 三種情形討論。我們也引進 almost positive linear operators 的觀念。zh_TW
dc.description.abstractThis paper is concerned the results of Korovkin type approximation theorems related with the generalized limits σ-limit and aσ-limit . We shall also study some basic properties of σ-limit and aσ-limit . On the other hand, we study the Korovkin type approximation theorems by departing into the following three situations: pointwise, weak convergence and norm convergence. We shall introduce a new concept, so called almost positive linear operators.en_US
dc.description.tableofcontents1.Introduction………………………………………………………1 2.Some basic definition and results…………………………5 3.Pointwise approximation theorems of type σ-limit ………8 4.Approximation theorems of type σ-limit …………………16 5.Pointwise approximation theorems for almost positive operator sequence…………………………………………………23 6.Approximation theorems for almost positive operator sequence……28 Reference……………………………………………………………31zh_TW
dc.language.isoen_USzh_TW
dc.publisher應用數學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3006200815101600en_US
dc.subjectKorovkinen_US
dc.subject近似定理zh_TW
dc.subjectapproximation theoremen_US
dc.subjectσ-limiten_US
dc.subjectaσ-limiten_US
dc.subject廣義極限zh_TW
dc.subject弱收歛zh_TW
dc.subject強收斂zh_TW
dc.title關於 σ-limit 的 Korovkin 型近似定理zh_TW
dc.titleKorovkin Type Approximation Theorem Related with σ-limiten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:應用數學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.