Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorChi-Hui Chienen_US
dc.contributorYuan-Fang Chenen_US
dc.contributorShyh-Tsong Linen_US
dc.contributorNai-Shang Liouen_US
dc.contributor.advisorMin-Jui Huangen_US
dc.contributor.authorLiou, Jhe-Kunen_US
dc.identifier.citation[1] A. Twitto, J. Shamir, A. Bekker and A. Notea, “Detection of internal defects using phase shifting holographic interferometry,” NDT&E Intl, vol. 29(3), pp. 163-173(1996). [2] O. J. Lokberg, “Recent developments in video speckle interferometry,” Speckle Metrology, pp. 157-194(1993). [3] K. Creath, “Phase-shifting speckle interferometry,” Apple. Opt., vol. 24, pp. 3053-3058(1985). [4] L. C. Granam, “Synthetic interferometry radar for topographic mapping,” Proc. IEEE, vol. 62, pp. 763-768(1974). [5] M. J. Huang and Cian-Jhih Lai, “Phase unwrapping based on a parallel noise-immune algorithm,” Optics and Laser Technology, vol. 34, pp. 457-464(2002). [6] P. Hariharan, B. F. Oreb, and T. Eiju, Appl.Opt., vol. 26(13), pp. 2504(1987). [7] J. M. Huntley and H. Huntley, “Temporal phase-unwrapping algorithm for automated interferometry analysis,” Appl. Opt., vol. 32(17), pp. 3047(1993). [8] H. O. Salder and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt., vol. 36(13), pp. 2770(1997). [9] W. W. Macy Jr, “Two-Dimensional Fringe-Pattern Analysis,” Appl. Opt., vol. 22, pp. 3898(1983). [10] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry : Two-dimensional phase unwrapping,” Radio Science, vol. 23(4), pp. 713(1988). [11] N. H. Ching, D. Rosenfeld and M. Braun, “Two-dimensional phase unwrapping using a minimum spanning tree algorithm,” IEEE, vol. 1(3), pp. 355(1992). [12] C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms,” J. Opt. Soc. Am. A, vol. 17(3), pp.401(2000). [13] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A, vol. 14(10), pp. 2692 (1997). [14] D. C. Ghiglia, G. A. Mastin and L. A. Romero, “Cellular-automatamethod for phase unwrapping”, J. Opt. Soc. Am. A, vol. 4, pp. 276(1987). [15] A. Spik and D. W. Robinson, “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Optics and Lasers in Engineering, vol. 14, pp. 25-37(1991). [16] H. Y. Chang, C. W. Chen, C. K. Lee and C. P. Hu, “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis,” Optics and Lasers in Engineering, vol. 30, pp. 487-502(1998). [17] M. J. Huang and Cian-Jhih Lai, “Phase unwrapping based on a parallel noise-immune algorithm,” Optics and Laser Technology, vol. 34, pp. 457-464(2002). [18] 陳森案, “相位重建之影像處理技術應用於光學量測之研究,” 中興大學機械工程學研究所碩士論文, 中華民國九十一年七月. [19] 郭昆泯, “調控式平行相位還原法參數選擇及還原結果最佳化研究,” 中興大學機械工程學研究所碩士論文, 中華民國九十四年七月. [20] Jain Kasturi Schunck, “Machine vision,” MIT Press and McGraw-Hill, pp. 44-48. [21] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital pictures,” Commun ACM, vol. 27(3), pp. 236-239(1984).zh_TW
dc.description.abstractPhase unwrapping method is a very significant technique in optical measurement. We usually face the problem such as phase map of countenance discontinue so it needs to solve immediately. In this paper, we simulate the wrapped phase maps of different types by using the computer. These wrapped phase maps can differentiate between physical continue and physical discontinue. The main purpose is using an adaptive parallel phase unwrapping method to obtain characteristic of phase unwrapping and adds some local-shifting image processing technique to cut region in this paper. When the wrapped phase is physical discontinue, we need to add a process of branch-cut. Otherwise we develop new shifting quantity automation and a technique of two-way error correction. Then we can get a regional phase unwrapping successfully.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1 研究動機與方向 1 1-2 論文大綱 2 第二章 相關相位展開技術回顧 3 2-1 ESPI相關技術回顧 3 2-2 相位展開基本觀念與分類 6 2-2.1 路徑相依相位展開法 8 2-2.2 路徑獨立相位展開法 10 2-3 調控式平行相位展開法 12 2-3.1 調控參數配對之特性 16 第三章 區域搬移相位還原法之研究 18 3-1 搬移組合圖的取得 19 3-2 物件編號技術 ( Labeling ) 23 3-3 細線化技術 ( Thinning ) 26 3-4 區塊填補 28 3-5 端點搜尋技術 31 3-6 消除贅餘線段技術 33 3-7 端點旋轉性的判別 35 3-8 高雜訊線段修正 36 3-9 剪切線標定 39 3-10 相位區域搬移量標定 39 3-11 相位區域搬移修正技術 43 第四章 相位展開結果驗證 45 五、結論 61 參考文獻 62zh_TW
dc.subjectoptical measurementen_US
dc.subjectphase unwrappingen_US
dc.subjectregional unwrappingen_US
dc.title利用調控式平行相位還原法與區域還原技術 於形貌不連續之相位展開技術研究zh_TW
dc.titleThe study for adaptive parallel phase unwrapping method and regional unwrapping technique on unwrapping phase of physical discontinuitiesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.