Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1818
標題: 調控式平行相位展開法參數自動搜尋並結合區塊接合技術進行形貌不連續相位圖之相位展開研究
Retrieving phase map with physical discontinuities by automatically adjusting the parameters of the "Adaptive Phase Unwrapping" algorithm
作者: 陳彥霖
Chen, Yan-Lin
關鍵字: adaptive phase unwrapping algorithm;調控式平行相位還原法;physical discontinuities;submap-stitching method;自身不連續面;區塊接合理論
出版社: 機械工程學系所
引用: [1] Burning, D. R. Herriott , J. E. Gallagher , D. P. Rosenfeld , A. D. White and D. J. Brancaccio , “Digital Wavefront Measuring Interferometry for Testing Optical surfaces and Lenses,” Appl. Opt. , Vol. 13 , pp. 2693, (1974) [2] J. M. Huntley and H. Huntley, “Temporal phase-unwrapping algorithm for automated interferometry analysis,” Appl. Opt., Vol. 32(17), pp. 3047, ( 1993 ). [3] H. O. Salder and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt., Vol. 36(13), pp. 2770, ( 1997 ) [4] W.W. Macy Jr, “Two-Dimensional Fringe-Pattern Analysis,” Appl. Opt. , Vol. 22, pp. 3898, (1983) [5] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry : Two-dimensional phase unwrapping,” Radio Science, Vol. 23(4), pp. 713, ( 1988 ). [6] N. H. Ching, D. Rosenfeld and M. Braun, “Two-dimensional phase unwrapping using a minimum spanning tree algorithm,” IEEE, Vol. 1(3), pp. 355, (1992). [7] C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms,” J. Opt. Soc. Am. A, Vol. 17(3), pp. 401, (2000). [8] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A, Vol. 14(10), pp. 2692, (1997). [9] J. J. Gierloff, “Phase unwrapping by regions,” SPIE, Vol. 818, pp. 2-9, (1987). [10] C. D. Veuster, P. Slangen, Y. Renotte, L. Berwart and Y. Lion, “Disc-growing algorithm for phase-map unwrapping: application to speckle interferograms,” Appl. Opt., Vol.35(2), pp. 240, ( 1996 ) [11] D. C. Ghiglia, G. A. Mastin and L. A. Romero, “Cellular-automatamethod for phase unwrapping,” J. Opt. Soc. Am. A, Vol. 4, pp. 276, (1987). [12] A. Spik and D. W. Robinson, “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Optics and Lasers in Engineering, Vol. 14, pp. 25-37, (1991). [13] H. Y. Chang, C. W. Chen, C. K. Lee and C. P. Hu, “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis,” Optics and Lasers in Engineering, Vol. 30, pp. 487-502, (1998). [14] M. J. Huang and Cian-Jhih Lai, “Phase unwrapping based on a parallel noise-immune algorithm,” Optics and Laser Technology (EI, SCI), 34(6), pp. 457-464, (2002). [15] M.J. Huang and Zi-Neng He, “Phase unwrapping through region-referenced algorithm and window-patching method,” Optics Communications (EI, SCI), 203(3-6), pp. 225-241, (2002). [16] 郭坤民,“調控式平行相位還原法參數選擇及還原結果最佳化研究”,中興大學機械工程學研究所碩士論文,中華民國九十四年七月。 [17] Ramesh Jain, Rangachar Kasturi and Brian G. Schunck, Machine Vision, McGRAW-HILL, pp. 44-47 (1995) [18] Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path”, Appl. Opt. , Vol. 41 (35), pp. 7437-7444, (2002). [19] 陳聖奇,“結合Minimum LP–norm與區塊接合技術應用於EPSI之相位展開研究”, 國立中興大學機械工程學研究所碩士論文,中華民國九十四年七月。
摘要: 
本論文分別使用調控式平行相位還原法的特性為判斷機制,讓此演算法的兩個調控參數(T1、T2)作自動的調整修正:儘管給予的初始配對並非正確的配對,仍然可以依循自動調控的邏輯收斂到正確的配對,並且將被包裹的相位資訊正確地還原出來。
此外亦考慮應用在量測物件具有自身不連續面( physical discontinuities )時,結合新式區塊接合理論,針對各區塊展開後結果去找出形貌不連續的分岔點位置,藉由曲線擬合修正區塊接合中部分區塊接合不完整的部分,使相位能更接近原始資訊。
最後再利用實驗得到含有自身形貌不連續的包裹相位圖作測試,以了解此法在實際應用上的能力以及面臨到的問題。

In this research, we try to adjust the parameters of adaptive phase unwrapping algorithm automatically. Though the initial parameters are not correct, can still follow adaptability logic to find the correct parameters automatically and retrieval of the true phase field from wrapped format data.
Furthermore, phase map with physical discontinuities are also taken into consideration. We used adaptive phase unwrapping algorithm and submap-stitching method to find out fork location of the physical discontinuities from the result of unwrapped phase map. Using the curve fitting to modify the wrong stitching submaps can make the phase to unwrap successfully.
URI: http://hdl.handle.net/11455/1818
其他識別: U0005-0908200716164900
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.