Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1831
標題: 製作圓型且表面具奈米結構之生物可降解之組織工程人工微血管
Fabrication of tissue engineering PLGA biodegradable Circular Microvessel with nanostructure on the surfaces
作者: 薛丞智
Hsueh, Cheng-Chih
關鍵字: PLGA;PLGA;Circular microchannel;Thermal reflow;Quantum dots labeling;nanostructure;AAO;圓形管道;光阻熱熔;量子點標定;奈米結構;AAO
出版社: 機械工程學系所
引用: [1]. 宋信文、梁晃千,“建立人類的人體工房-組織工程,”科學發展 Vol. 362,6-11,2003。 [2] Madou MJ, Lee LJ, Daunert S, Lai S, Shih CH. “Design and Fabrication of CD-like Microfluidic Platforms for Diagnostics: Microfluidic Functions,” Biomedical Microdevices ,3(3):245-254,2003. [3] Martin RS, Gawron AJ, Lunte SM, Henry CS. “Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips,” Anal. Chem. ,72:3196-3202,2000. [4] Jiang G, Attiya S, Ocvirk G, Lee WE, Harrison DJ. “Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis,” Biosensors and Bioelectronics,14(10-11):861-869,2000. [5] Polla DL, Krulevitch P, Wang A, Smith G, Diaz J, Mantell S, Zhou J, Zurn S, Nam Y, Cao L, Hamilton J, Fuller C, “Gascoyne P. MEMS–based diagnostic Microsystems. Proceeding of the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies,” Medicine & Biology,41-44,2000. [6] Alvarez M, Calle A, Tamayo J, Lechuga LM, Abad A, “Montoya A. Development of nanomechanical biosensors for detection of the pesticide DDT,” Biosensors and Bioelectronics ,18(5-6):649-653,2003. [7] Fidkowski C, Kaazempur-Mofrad M, Borenstein J, “Vacanti JP, Langer R, Wang Y. Endothelialized Microvasculature Based on a Biodegradable Elastomer. Tissue Engineering 2005;11(1/2):302-309. [8] Wang GJ, Hsu YF, Hsu SH, Horng RH. “JSR Photolithography Based Microvascular Fabrication and Cell Seeding. Biomedical Microdevices,8(1):17-28,2006. [9] Kovacs GTA, Maluf NI, Petersen KE. “Bulk micromachining of silicon,” Proceedings of the IEEE ,86(8):1536-1551,1998. [10] Pan LC, Liang YC, Tseng FG, Leou KC, Chen LD, Lai YY. “A novel application of acoustic plate mode sensor in tissue regeneration. Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies,” Medicine & Biology, 143-144,2002. [11] Chang HK and Kim YK. “UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole,” Sensors and Actuators,84(3):342-350,2000. [12] Jeon NL, Chiu DT. “Microfluidics Section: Design and Fabrication of Integrated Passive Valves and Pumps for Flexible Polymer 3-Dimensional Microfluidic Systems,” Biomedical Microdevices,4(2):117-121,2002. [13] Kancharla VV and Chen S. “Fabrication of Biodegradable Polymeric Micro-Devices Using Laser Micromachining,” Biomedical Microdevices,4(2):105-109,2002. [14] Ahn CH, Chol JW, Beaucage G, Nevin JH, Lee JB, “Puntambekar A and Lee JY. Disposable smart lab on a chip for point-of-care clinical diagnostics,” Proceedings of the IEEE,92(1):154-173,2004. [15] McCormick RM, Nelson RJ, Alonso-Amigo MG, Benvegnu DJ, Hooper HH. “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Anal. Chem,69 : 2626-2630,1997. [16] Xia Y. and Whitesides GM. “Soft Lithography,” Annu. Rev. Mater. Sci,28: 153-184,1998. [17] Rogers JA and Nuzzo RG. “Recent progress in soft lithography,” Materials today,8:50-56,2005. [18] Borenstein J, Terai H, King KR, Weinberg EJ, Vacanti JP, “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices 4(3): 167-175,2002. [19] Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP, “Endothelialized Networks with a Vascular Geometry in Microfabricated Poly (dimethyl siloxane),” Biomedical Microdevices 6(4),269–278 , 2004. [20] Fidkowski C, Kaazempur-Mofrad M, Borenstein J, Vacanti JP, Langer R, Wang Y, “Endothelialized Microvasculature Based on a Biodegradable Elastomer,” Tissue Engineering11(1/2),302-309 ,2005. [21] King KR, Wang CCJ, Kaazempur-Mofrad, MR, Vacanti, JP, Borenstein, JT, “Biodegradable microfludics,” Advenced Materials 2004;16(22):2007-12. [22] Vozzi G, Flaim C, Ahluwalia A, Bhatia S, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 2003;24(14):2355-40. [23] Lu Y, Chen SC , “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Advanced Drug Delivery Reviews,1621– 1633,2004. [24] Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti J P , Langer R,and Wang Y, “Endothelialized Microvasculature Basedon a Biodegradable Elastomer,” tissue engieering,Vol 11, Num 1/2, 2005. [25] Yang LJ, Chen YT, Kang SW, Wang YC, “Fabrication of SU-8 embedded microchannels with circular cross-section,” International Journal of Machine Tools & Manufacture 44, 1109-1114, 2004. [26] Yi Y, Kang JH, Park JK, “Moldless electroplating for cylindrical microchannel fabrication,” Electrochemistry Communications 7 , 913–917, 2005. [27] Luis AL, Rodrigues JM, Amado S, Veloso AP, Armada-Da-Silva PA, Raimondo S, Fregnan F, Ferreira AJ, Lopes MA, Santos JD, Geuna, S Varejao AS, Mauricio AC, Microsurgery 27:125–137, 2007. [28]潘勁屹,“聚己內酯表面活化與表面奈米化對細胞生長之研究”,國立雲林大學化學工程系研究所碩士論文,2003。 [29] Sonaje K, Italia JL, Sharma, G., Bhardwaj, V., Tikoo, K., Kumar, M. N, Pharmaceutical Research: 24(5), 2007. [30]. Mittal, G.., Sahana, D. K., Bhardwaj, V., Kumar, M. N., J Control Release: 77-85, 2007. [31] Park GE, Park K, Webster TJ, ”NaOH-Treated PLGA Scaffolds Allow for GreaterArticular Chondrocyte Functions” ,500 Central Drive, West Lafayette, IN 47907-2022 [32] Miller DC, Thapa A, Haberstroh KM, and Webster TJ, ” Enhanced Functions of Vascular and Bladder Cells on Poly-Lactic-Co-Glycolic Acid PolymersWith Nanostructured Surfaces” , IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 1, NO. 2, 2002. [33] Derick CM, Thapa A, Haberstroh KM, Webster TJ, ”Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structuredsurface features,” Biomaterials 25,53–61, 2004. [34] http://www.getgoal.com.tw/tech/tech-3.htm [35] 朱佳仁,“工程流體力學”,科技圖書股份有限公司,2001。 [36] 林志益,“微渠道內流場之觀察與速度量測”,國立中山大學機械與機電工程學系研究所碩士論文,2004。 [37] Adrian RJ, “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, VOL. 23 , 261-304, 1991. [38] http://www.cmi.hku.hk/Ref/Glossary/Phy/az.html [39]http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookcir- cSYS.html [40] http://zh.wikipedia.org/wiki/%E8%A1%80%E7%AE%A1 [41] http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookcir- cSYS.html [42] Wang GJ and Hsu YF, “Structure Optimization of Microvascular Scaffolds” Biomedical Microdevices 8(1),51-58, 2006. [43] 蘇建彰、陳建洋等人, “轉印模仁之奈米結構製作,”機械工業雜誌 269, 44~55, 2005。 [44] Stark RW, Stalder MS and Stemmer A, “Microfluidic Etching Driven by Capillary Forces for Rapid Prototyping of Gold Structures,” Microelectronic Engineering, Vol. 67-68 , 229-236, 2003. [45] Murakami T, S. Kuroda and Z. Osawa, “Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma:Effect of Aging Media After Plasma Treatment,” Journal of Colloid and Interface Science, Vol. 202 , 37-44, 1998. [46] 林大鈞,“內皮細胞植覆於聚胺基甲酸酯人工小血管之評估”,國立中興大學化學工程學系研究所碩士論文,2001。 [47] http://web2.tmu.edu.tw/B108091005/2-2-1.htm
摘要: 
摘 要
PLGA為廣泛應用之生物可降解材料之一,而具奈米結構之PLGA更是在組織工程上有極大之應用潛能,本研究主要分成兩大部分分別探討圓形PLGA於人工微血管支架之製備,以及真空抽氣法製備PLGA奈米結構。
在圓形人工微血管支架方面,研究中以FEMLAB有限元素分析模擬軟體,針對微管道進行最佳化設計,且以軟體與公式分析流阻與流速之間關係,達成管道設計最佳化。在製程方面,以黃光微影技術製作JSR光阻母模,配合光阻熱熔法形成半圓形母模結構,再以一次翻模方式製作以PLGA為基材之半圓形微管道結構,最後以ICP接合形成用具圓形截面之PLGA微血管道支架。此製程步驟簡單,並可製作出良好精度之微管道結構。在細胞培養方面,因PLGA水解無法觀測,於是本研究使用Calcein -AM staining與量子點觀測管道內細胞,PLGA具良好之生物相容性且由類動態培養有良好之培養機制,因此細胞於PLGA微管道內能有很好之貼附生長情形。
在奈米結構生醫材料製備方面,研究提出以陽極氧化鋁模(AAO)結合真空抽氣壓印法之物理方式,於PLGA上製作不同奈米結構圖案之支架,用以培養牛頸動脈內皮細胞,經轉印過後的PLGA能更利於細胞的貼附,細胞生長速率乃是無奈米結構PLGA之兩倍。本研究所提出之新方法除製程簡單,且不會改變PLGA之材料特性,可藉由AAO之製程控制奈米結構之圖案。
本研究所提出之兩種PLGA生醫微元件,不論是結構與製程皆尚未見於相關文獻中,在組織工程上有極大應用。

Abstract
PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, the fabrication techniques for two biomedical PLGA microdevices: (1) PLGA microvessel scaffold with circular microchannels (2) nanostructured PLGA membrane, were investigated and developed.
In the fabrication of the PLGA microvessel scaffold with circular microchannels , the thermal reflow technique was adopted to fabricate the semi-cylindrical photoresist master; the PLGA solution was prepared by dissolving PLGA polymer in acetone and then casting the solution onto the semi-cylindrical photoresist master to produce PLGA microstructures; finally two PLGA membranes were bonded together to form microstructures consisting of circular microchannels. A microvessel scaffold suitable for tissue engineering was fabricated using the proposed method, and bovine endothelial cells were cultured into the scaffold by semi-dynamic seeding. The cell stain Calcein-AM was used to overcome the problem of the PLGA scaffolds becoming opaque, which in the past has made it difficult to effectively monitor the progress of cell seeding.
In the fabrication of the nanostructured PLGA membrane, an anodic aluminum oxide (AAO) membrane was use as the template; the PLGA solution was then cast on it; the vacuum air-extraction process was then applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.
The two biomedical PLGA microdevices developed in this research are novel both in the fabrication techniques and the structures. They have very feasible applications in tissue engineering.
URI: http://hdl.handle.net/11455/1831
其他識別: U0005-1207200716034700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.