Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1833
標題: 氫離子濃度梯度驅動之太陽光電池之性能提升
Performance improvement of the chloroplastmimic photovoltaics
作者: 陳逸宏
Chen, Yi-Hung
關鍵字: hloroplastmimic photovoltaics;太陽光電池;cnt;photocurrent;仿葉綠體;仿生;奈米碳管應用
出版社: 機械工程學系所
引用: [1] B. O’Regan and M Grätzel, Nature 353, 737, (1991). [2] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtels, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 395, 583, (1998). [3] M Grätzel, Nature 414, 15, 338, (2001). [4] M. DüRR, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, Nature Materials, 4, 607, (2005) [5] A. Fujishima, K. Honda, Nature 238, 37, (1972) [6] H. Shibata, Y. Ogura, Y. Sawa, and Y. Kono, Biosci. Biotechnol. Biochem., Vol. 62, No. 12, pp. 2306, (1998) [7] H. Shibata, N. Noda, Y. Ogura, K. Sogabe, and Y. Sawa, Biosci. Biotechnol. Biochem., Vol. 64, No. 8, pp. 1751, (2000) [8] S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, Nanotechnology, 16, 850, (2005). [9] W. J. Yu, Y. S. Cho, G. S. Choi, and D. Kim, Nanotechnology, 16, S291, (2005). [10] T. Yanagishita, K. Nishio, and H. Masuda, Adv. Mater., 17, No. 18, 2241, (2005). [11] http://pc11.lssh.tp.edu.tw/finaldown/download/200210291204第3-3章.pdf [12] A. Fujishima and K. Honda, Nature 238, 37, (1972). [13] R. Wang,K. Hashimoto,A. Fujwashima, Nature 388, 431, (1997). [14] Y. Ohko, T. Tatsuma, T. Fuzii, K. Naoi, C. Niwa, Y. Kubota, A. Fujwashima,Nature Mat. 2, 29, (2002). [15] G.P. Burn,J. Appl. Phys. 65, 2095, (1989). [16] M. Kaneko, I. Okura, eds., Photocatalysis, Springer Verlag, (2003). [17] A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C:Photochem. Rev. 1, 1, (2000). [18] O. Khaselev, J. A. Turner, Science 280, 425, (1998). [19] Kawaguchi, H. EnViron. Technol. Lett. 5, 471, (1984). [20] Augugliaro, V. Palmisano, L. Sclafani, A. Minero, C. Pelizzetti, E. Toxicol. EnViron. Chem. 16, 89, (1988). [21] Okamoto, K. Yamamoto, Y. Tanaka, H. Tanaka, M. Itaya, A. Bull, Chem. Soc. Jpn. [22] Matthews, R. W., J. Catal. 97, 56, (1986). [23] A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. 94, 892, (1990). [24] A. Sclafani, J. M. Herrmann, J. Phys. Chem. 100, 13655, (1996). [25] Phase Diagrams for Ceramists Figure , The American Ceramic Society, Inc. 76, 4150, (1975). [26] Jillian F. Banfield, Brian L. Bischoff and Marc A. Anderson, Chemical Geology. 110, 211, (1993). [27] M.S.Ahmed & Y.A.Attia , J.Non-crystalline Solids , 186, 402, (1995). [28] S.D.Richardson , A.D.Thruston , T.M.Collette , K.S.Patterson , B.W.Lykins , J.C. Ireland , Environ.Sci.Technol. , 30, 3327, (1996). [29] Nosaka Y. , Fox M. A. , J. Phys. Chem. , 92, 1983, (1988). [30] M.Anpo , Studies in surface Science and Catalysis , 130, 157, (2000). [31] K.Wilke , H.D.Breuer , J.Photochem.Photobiol.A:Chem , 121, 49, (1999). [32] J.A.Navio , G.Colon , M.Macias , C.Real , M.I.Litter , Appl.Catal.A:General , 177, 111, (1999). [33] W.Choi , A.Termin , M.R.Hoffmann , J.Phys.Chem. , 98, 13669, (1994) . [34] V.Brezova , A.Blazkova , L.Karpinsky , J.Groskova , B.Havlinova , V.Jorik , M.Ceppan , J.Photochem.Photobiol.A:Chem. , 109, 177, (1997). [35] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295, 2425, (2002). [36] Y. Yu, J. C. Yu, J, Kwok,Applied Catalysis A:General 289, 186, (2005). [37] C. Dechakiatkrai, J. Chen, C. Lynam, Journal of The Electronchemical Society, 154 (5), A407, (2007). [38] 張智棋、李佳家、陳建忠,“一維奈米同軸陣列式複合材料的製備,”第九屆奈米工程暨微系統技術研討會,(2005)。 [39] H. Asoh et al., J. Electrochem. Soc. 148, B152, (2001). [40] H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127, (1997). [41] G. E. Thompson, Thin Solid Film 297, 192, (1997). [42] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J Appl. Phys 84, 6023, (1998). [43] J. Zhu, J. Z. F. Chen, and M. Anpo, Mater. Lett., 59, 3378, (2005). [44] L. Zhang, M. Wan, and Y. Wei, Synth. Met., 151, 1, (2005). [45] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, Sens. Actuators B, 68, 189, (2000). [46] 陳維正, 王國禎, “ 仿葉綠體機制之奈米光電池技術研究,” 國立中興大學機械工程研究所碩士學位論文, 民 95。
摘要: 
本研究乃是承續本實驗室先前已開發出之仿葉綠體機制之新型光太陽電池技術,由提升仿葉綠體囊膜之H+通過率以及人工酵素之光催化效率兩方面著手,提出能進一步提升光電性能之技術。
在提升仿葉綠體囊膜之H+通過率方面,研究結果發現AAO奈米孔洞之孔徑越大所產生之光電流越大。在人工酵素之光催化效率提升方面, 研究結果發現CNT的加入會改變TiO2之能隙,而抑制電子-電洞對再結合的發生,由於電子-電洞之氧化還原能力增強,因而提升光催化效果。研究中分別測試不同厚度之TiO2與不同高度之CNT陣列,實驗證實CNT相對於TiO2之含量愈高,產生之光電流愈強。亦即較高之CNT陣列厚度結合較薄的TiO2塗層會有較佳之光電效應。而研究中亦發現人工酵素之尺寸愈大光電流增加速率愈大。
以孔徑約150nm之磷酸AAO奈米孔洞薄膜做為離子通道,厚度約6.78μm之CNT/14nm之TiO2做為人工酵素,則光電流有極大之提升。

In this research, schemes to increase the photocurrent efficiency of the chloroplastmimic photovoltaics were investigated. Our emphases were on both the increasing the hydrogen ions flux through the artificial thylakoid membrane and the photolysis efficiency improvement of the artificial chlorophyll.
In the increase of the hydrogen ions flux through the artificial thylakoid membrane, it is found that the larger the nanopore of the artificial thylakoid membrane is, the bigger the photocurrent is.
In the improvement of the artificial chlorophyll's photolysis efficiency, several feasible solutions were obtained. Firstly, the standing carbon nano tube (CNT) array changes the band gap of the titanium dioxide such that the recombinations of the photo excited electron-hole pairs are restricted; therefore, the photolysis efficiency can be enhanced due to the increase of the redox reaction ability of the photo excited electron-hole pairs. Secondly, it was found that the photocurrent could be enhanced by the increase of the content ratio of the CNT to the titanium dioxide. It indicates that a thicker CNT array combines with a thinner titanium dioxide film has better efficiency.
Investigation results show that the parameter set combining an AAO membrane with 150 nm pores and a 6.78um high CNT array deposited with a 14 nm think titanium dioxide film produces relatively high photo current.
URI: http://hdl.handle.net/11455/1833
其他識別: U0005-1207200716353000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.