Please use this identifier to cite or link to this item:
標題: 低驅動電壓之可調變微帶通濾波器
Tunable Micro Bandpass Filters with Low Driving Voltage
作者: 洪俊榆
Hong, Jin-Yu
關鍵字: tunable-filter;可變濾波器;tunable-inductor;RF switch;CMOS;Q3D;可變電感;射頻開關;CMOS;Q3D
出版社: 機械工程學系所
引用: [1] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Microwave Symposium Digest, G-MTT International, vol. 69, pp. 110-115 (1969). [2] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” IEEE Microwave Symposium Digest, MTT-S International, vol. 2, pp. 789-792 (1997). [3] S. Bantas, Y. Papananos and Y. Koutsoyannopoulos, “CMOS tunable bandpass RF filters utilizing coupled on-chip inductors,” Circuits and Systems. ISCAS proceedings of the IEEE International Symposium, vol. 2, pp. 581-584 (1999). [4] A. R. Brown and G. M. Rebeiz, “A varactor-tuned RF filter,” IEEE Microwave Theory and Techniques Transactions, vol. 48, pp. 1157-1160 (2000). [5] X. P. Liang and Y. F. Zhu, “Hybrid resonator microstrip line electrically tunable filter,” IEEE Microwave Symposium Digest vol. 3 , pp. 1457-1460 (2001). [6] J. H. Park, H. T. Kim, Y. Kwon and Y. K. Kim, “Tunable millimeter-wave filters using a coplanar waveguide and micromachined variable capacitors,” Journal of Micromechanics and Microengineering, vol. 11, No. 6, pp. 706-712 (2001). [7] H. T. Kim, J. H. Park, Y. K. Kim and Y. W. Kwon, “Low-loss and compact V-band MEMS-based analog tunable bandpass filters,” IEEE Microwave and Wireless Components Letters, vol. 12, pp. 432-434 (2002). [8] A. Abbaspour-Tamijani, L. Dussopt and G. M. Rebeiz, “Miniature and tunable filters using MEMS capacitors,” IEEE Microwave Theory and Techniques Tran- sactions, vol. 51, pp. 1878-1885 (2003). [9] A. Tombak, J. P. Maria, F. T. Ayguavives, J. Zhang, G. T. Stauf, A. I. Kingon and A. Mortazawi, “Voltage-controlled RF filters employing thin-film barium- strontium-titanate tunable capacitors,” IEEE Microwave Theory and Techniques, Transactions, vol. 51, pp. 462-467 (2003). [10] M. K. Roy, C. Kalmar, R. R. Neurgaonkar, J. R. Oliver and D. Dewing, “A highly tunable radio frequency filter using bulk ferroelectric materials,” IEEE Appli- cations of Ferroelectrics Symposium, vol. 23, pp. 25-28 (2004). [11] J. M. Kim, S. Lee, J. H. Park, J. M. Kim, C.W. Baek, Y. Kwon and Y. K. Kim, “Low loss K-band tunable bandpass filter using micromachined variable capaci- tors,” Solid-State Sensors, Actuators and Microsystems, vol. 1, pp. 1071- 1074 (2005). [12] J. Papapolymerou, C. Lugo, Z. Zhao, Xiaoyan Wang and A. Hunt, “A Miniature Low- Loss Slow-Wave Tunable Ferroelectric BandPass Filter From 11-14 GHz,” IEEE Microwave Symposium Digest, MTT-S International, pp. 556-559 (2006). [13] M. F. Karim, A. Q. Liu, A. Alphones and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” Journal of Micromechanics and Microengineering, vol. 16, No. 4, pp. 851-861 (2006). [14] K. Kawai, H. Okazaki and S. Narahashi, “Center frequency and bandwidth tu- nable filter employing tunable comb-shaped transmission line resonators and J- inverters,” 36th European Microwave Conference, pp. 649-652 (2006). [15] D. Morikawa, H. Deguchi, M. Tsuji and H. Shigesawa, “A microstrip-line phase shifter constructed by a tunable filter,” Electronics and Communications in Japan, vol. 90, No. 2, pp. 25-32 (2007). [16] C. Lugo, G. Wang, J. Papapolymerou, Z. Zhao, X. Wang and A. T. Hunt, “Fre- quency and bandwidth agile millimeter-wave filter using ferroelectric capa- citors and MEMS cantilevers,” IEEE Microwave Theory and Techniques Tran- sactions, vol. 55, pp. 376-382 (2007). [17] . [18] P. Park, C. S. Kim, M. Y. Park, S. D. Kim and H. K. Yu, “Variable inductance multilayer inductor with MOSFET switch control,” IEEE Electron Device Letters vol. 25, pp. 144-146 (2004). [19] 袁杰,高頻通信電路設計-被動網路,全華科技圖書出版 (1994). [20] 森榮二,LC濾波器的設計與製作,林肇彬譯,建興文化事業出版 (2003). [21] 施敏,半導體元件之物理與技術,張俊彥譯,儒林出版 (1990). [22] D. M. Pozar,微波工程,郭仁財譯,高立圖書有限公司出版 ( 2001). [23] H. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Parts, Hybrids, and Packaging Transactions, vol. 10, pp. 101-109 (1974). [24] S. S. Mohan, M. M. Hershenson, S. P. Boyd and T. H. Lee, “Simple accurate ex- pressions for planar spiral inductances,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 1419-1424 (1999). [25] C. P. Yue, C. Ryu, J. Lau, T. H. Lee and S. S. Wong, “ A physical model for planar spiral inductors on silicon,” IEEE International Electron Devices Meeting, pp. 155-158 (1996). [26] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE Solid-State Circuits, vol. 33, pp. 743-752 (1998). [27] S. Jenei, S. Decoutere, S. V. Huylenbroeck, G. Vanhorebeek and B. Nauwelaers, “High Q inductors and capacitors on Si substrate,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 64-70 (2001). [28] C. L. Dai and C. H. Tsai, “Fabrication of integrated chip with microinductors and micro-tunable capacitors by complementary metal-oxide-semiconductor post- process,” Japanese Journal of Applied Physics, vol. 44, No. 4 , pp. 2030-2036 (2005) [29] Transene Company INc. [30] 楊志偉,含感測電路的整合型微壓力感測器,國立中興大學碩士論文 (2006). [31] D. Peroulis, S. Pacheco, K. Sarabandi and L. P. B. Katehi, “Tunable lumped com- ponents with applications to reconfigurable MEMS filters,” IEEE Microwave Symposium Digest, MTT-S International, vol. 1, pp. 341-344 (2001). [32] J. N. Burghartz and B. Rejaei, “On the design of RF spiral inductors on silicon,” IEEE Electron Devices, vol. 50, pp. 718-729 (2003). [33] B. C. Kim, D. H. Han and R. Liu, “Characterization of on-chip inductors for wire- less applications,” ARFTG Conference Digest, pp. 125-129 (2002). [34] 黃進芳,微波工程,五南圖書公司出版社 (2004). [35] 莊達人,VLSI製造技術,高立圖書有限公司出版 (2003). [36] 國家科學委員會,微機電系統技術與應用,精密儀器發展中心出版 (2003). [37] 張振元,共面波導帶通濾波器之設計,國立台灣大學碩士論文 (2001)
本論文利用TSMC標準0.35μm 2P4M CMOS製程製作可調變微帶通濾波器。可調變微帶通濾波器變頻原理,是藉由調變電路中的串聯電感值改變濾波頻段。串聯電感值改變的方法,為利用p-n junction射頻開關的開路與斷路達成變換之效果。此p-n junction射頻開關所需驅動電壓小於2伏特,其消耗功率低於應用可變電容的可調變帶通濾波器。測試結果顯示可調變微帶通濾波器在p-n junction射頻開關off時,濾波器中心頻率為1.10 GHz,插入損失為-26.895 dB及3 dB頻寬超過900 MHz。在開關on時,濾波器中心頻率為2.30 GHz,插入損失為-31.258 dB及3 dB頻寬亦超過900 MHz。量測結果顯示可調變微帶通濾波器的調變頻率比超過100%(1.1-2.3GHz)。於微電感量測部份,結果顯示電感值最大為4.077 nH,Q值最大點出現在頻率11.1 GHz,其值為15.291,且共振頻率超過26 GHz。
本文在附錄A.中也提供一種新型電路的微壓力感測器之製作,其壓力量測範圍為0~500 kPa,靈敏度約0.0254 mV/kPa。

This study investigates the fabrication of tunable micro bandpass filters using the standard TSMC 0.35μm 2P4M (double polysilicon four metal) CMOS (complementary metal oxide metal semiconductor) process. The micro tunable bandpass filters are tuned by the inductance of the series inductors, which are controlled by p-n junction switches. The driving voltage of the tunable micro bandpass filters is approximately 2V. In addition, its power consumption is less than the type of tunable capacitance filters.
When the p-n junction switches are unactuated, the insertion loss of the tunable
micro bandpass filter is -26.895dB at 1.10GHz, and the 3dB bandwidth is over 900MHz. When the switches are actuated, the insertion loss is -31.258dB at 2.3GHz, and the bandwidth is also over 900MHz.The experimental results show that the tunable micro bandpass filter has a tunability of 109%(1.1-2.3GHz).The maximum Q factor of the micro inductor is 15.291 at 11.1GHz, and the maximum inductance is 4.077nH. In addition, the resonant frequency of the micro inductor can be over 26GHz.
The fabrication of a micro-pressure sensor with a novel circuit is presented in the appendix A. The sensitivity of the pressure sensor is 0.0254mV/kPa in pressure range of 0-500kPa.
其他識別: U0005-1408200715283400
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.