Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1854
標題: 流道設計對微型熱沉性能影響之研究
Investigation of the Microchannel Design Effect on the Microscale Heat Sink Performance
作者: 林文益
Lin, Wen-yi
關鍵字: Microchannel;微流道熱沉;Heat sink;Deep RIE;流道設計;深離子蝕刻
出版社: 機械工程學系所
引用: [1] F. P. Incropera, Fundamentals of Heat and Mass transfer, John Wiley& Sons, 2002. [2] G. A. Ledezma and A. Bejan., “Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection,” Journal of Heat Transfer, Vol. 119, No. 4, pp. 700-708, November 1997. [3] S. Lee, “Optimum Design and Selection of Heat Sink,” IEEE Transactions on Component and Packaging and Manufacturing Technology, Part A, Vol. 18, No. 4, pp. 812-817, 1995. [4] H. M. Joshi and R. L. Webb., “Heat Transfer and Friction in The Offset Strip Fin Heat Exchanger,” Int. J. Heat Mass Transfer, Vol. 30, No. 1, pp. 69-84, 1987. [5] O. N. Sara, “Performance Analysis of Rectangular Ducts with Staggered Pin Fin,” Energy Convection and Management, Vol. 44, pp. 1787~1803, 2003. [6] C. L. Belady, “Standardizing Heat Sink Characterization for Forced Convection,” Electronics Cooling, Vol. 3, No. 3, September, 1997. [7] H. Jonsson and B. Palm, “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Condition,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, pp. 47-54, 2000. [8] S. Lee, “Calculating Spreading Resistance in Heat Sinks,” Electronics Cooling, Vol. 4, No. 1, pp. 30-33, 1998. [9] P. Sathyamurthy and P. W. Runstadler, “Numerical and Experimental Evaluation of Planar and Staggered Heat Sinks,” Intersociety Conference on Thermal Phenomena, pp. 132-139, 1996. [10] H. Jonsson and B. Moshfegh, “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 142-149, 2001. [11] W. N. Kim, S. Y. Kim and B. H. Kang, “CFD Simulation of Thermal Dissipation From Fan-Added Plate Fin and Offset Strip Fin Heat Sinks,” Inter Society Conference on Thermal Phenomena, pp. 213-217, 2004. [12] Moore’s Law, http://www.intel.com/technology/mooreslaw/index.htm [13] D. B. Tuckermann and R. F. Pease, “High Performance Heat Sink for VLSI,” IEEE Electron Device Lett, EDL-2, pp. 126-129, 1981. [14] L. Meysenc, L. Saludjian, A. Bricard, S. Rael, C. Schaeffer, “A High Heat Flux IGBT Micro Exchanger Setup,” IEEE Transactions on Components, Packaging and Manufacturing Tehnology-Part A 20, pp. 334~341, 1997. [15] C. S. Landram, “Computational Model for Optimizing Longitudinal Fin Heat Transfer in Laminar Flow,” Heat Transfer in Electronic Equipment ASME, pp. 158-164, 1991. [16] W. Zhimin and C.K. Fah, “The Design of Microchannel Heat Sinks,” IEEE Electronic Packing Technology, pp. 123-129, 1997. [17] W. Qu and I. Mudawar, “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat sink,” Heat and Mass Transfer, Vol. 45, pp. 2549-2563, 2001. [18] J. H. Ryu, D. H. Choi and S. J. Kim, “Numerical Optimization of The Thermal Performance of a Microchannel Heat Sink,” Heat and Mass Transfer, Vol. 45, pp. 2823-2827, 2001. [19] I. Papautsky, T. Ameel, A. B. Frazier, “A Review of Laminar Single-Phase Flow in Microchannels,” ASME Int. Mechanical Engineering , 2001. [20] P. S. Lee and J. C. Ho, “Experimental Study On Lamina Heat Transfer in Microchannel Heat Sink,” Inter Society Conference on Thermal Phenomena, pp. 379-386, 2002. [21] M. E. Steinke and S. G. Kandlikar, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flow,” ASME Microchannels and Minichannels, pp. 141-148, 2004. [22] W. Qu and I. Mudawar, “Measurement and Correlation of Critical Heat Flux in Two-phase Micro-channel Heat Sinks,” Int. Journal of Heat and Mass Transfer, Vol. 47, pp. 2045-2059, 2004. [23] J.L. Xu, Y.H. Gan, D.C. Zhang, X.H. Li, “Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept,” Int. Journal of Heat and Mass transfer, Vol.48, pp. 1662-1674, 2004. [24] R. H. W. Pijnenburg, R. Dekker, C. C. S. Nicole, A. Aubry, E. H. E. C. Eummelen, “Integrated Micro-channel Cooling in Silicon,” IEEE Solid-State Device, pp. 129-132, 2004. [25] M. E. Steinke, S. G. Kandlikar, J. H. Magerlein, E. Colgan, A. D. Raisanen, “Development of an Experimental Facility for Investigating Single Phase Liquid Flow in Microchannels,” Heat Transfer Engineering, Vol. 27, pp. 41-52, 2006. [26] H. Y. Zhang, D. Pinjala, T.N. Wong, K.C. Toh and Y.K. Joshi, “Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages,” Applied Thermal Engineering, Vol. 25, pp. 1472-1487, 2005. [27] Y. Mishan, A. Mosyak, E. Pogrebnyak, G. Hetsroni, “Effect of Developing Flow and Thermal Regime on Momentum and Heat Transfer in Micro-Scale Heat Sink,” Int. Journal of Heat and Mass Transfer, Vol. 50, pp. 3100-3114, 2007. [28] H. Y. Wu and P. C. and H. Wang, “Pressure Drop and Flow Boiling Instabilities in Silicon Microchannel Heat Sinks,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 2138-2146, 2006. [29] J. Li and G. P. Peterson, “Geometric optimization of a Micro Heat Sink With Liquid Flow,” IEEE Transactions on Components and Packaging Technologies, Vol. 29, pp. 145-154, 2006. [30] S. G. Kandlikar and W. J. Grande, “Evaluation of Single Phase Flow in Microchannel for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology,” Heat Transfer Engineering, vol. 25, pp. 5-16, 2004. [31] M. E. Steinke and S. G. Kandlikar, “Single-Phase Liquid Friction Factors in Microchannels,” Inter. Journal of Thermal Science, Vol. 45, pp. 1073-1083, 2006. [32] S. Franssila, Introduction to Microfabrication, John Wiley & Sons, 2004. [33] 羅正忠,張鼎張,半導體製程技術導論,歐亞書局. [34] 微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心出版,2003. [35] P. Wibulswas, Laminar-flow Heat Transfer in Non-circular ducts, PhD thesis, University of London, 1966. [36] R. J. Philips, Forced Convection Liquid Cooled Microchannel Heat Sink Master’s Thesis, Massachusetts institute of Technology, Combride, MA, 1987. [37] R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, Supplement 1 to Advances in Heat Transfer. New York, Academic Press, 1978. [38] S. Kakac, R. K. Shah, and W. Aung, Handbook of Single-Phase Convective Heat Transfer. New York, John Wiley & Sons, 1987. [39] S. G. Kandlikar, Heat Transfer and Fluid flow in Minichannels and Microchannels, Elsevier, 2006. [40] W. M. Kays and A. L. London, Compact Heat Exchangers, 3rd. Ed., McGraw-Hill, New York.
摘要: 
本研究之目的,主要是探討四款不同微流道熱沉之流道設計,對於整體熱沉性能增益之影響。微流道熱沉設計概念,主要採用傳統交錯式鳍片(Staggered fin)排列構想,使熱沉內部工作流體形態改變,達到增進整體熱沉性能之目的。
微流道熱沉之流道設計形式,是以傳統微流道熱沉(Microchannel Heat Sink , MCHS)為設計基準,將MCHS內的平板鳍片(Plate fin)進行切割,使變成為Strip fin,並進一步將Strip fin 改變之排列方式。本研究探討其中具代表性的三種排列方式,分別為交錯式Strip-fin熱沉(Staggered Strip Fin Heat Sink , SSFHS)、重疊交錯式Strip-fin熱沉(Offset Staggered Strip Fin Heat Sink , OSSFHS)、橫交錯式Strip fin熱沉(Transverse Staggered Strip Fin Heat Sink , TSSFHS)。微型熱沉之製作,係以Silicon為底材,利用Deep RIE蝕刻技術完成。
本研究以實驗方式,進行對熱沉性能之探討,再以實驗條件為模擬輸入條件,進行數值模擬,對各熱沉內部性能相關探討。研究結果顯示,在相同操作條下,SSFHS及OSSFHS之設計,可獲得比微流道熱沉更低之熱阻,且其壓降稍為較微流道熱沉低。而TSSFHS之設計,雖其有效熱傳面積較大,但所獲得之熱阻及壓降表現,皆較其他熱沉設計差。
URI: http://hdl.handle.net/11455/1854
其他識別: U0005-1807200711474900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.