Please use this identifier to cite or link to this item:
標題: 雙足機器人的設計製作與步態規劃及嵌入式單軸伺服控制器實作
Design, Gait Generation and Embedded Microcontroller-based Single-axis Servo Controller Implementation for a Biped Walking Robot
作者: 高琦凱
Gao, Qi-Kai
關鍵字: biped robot;雙足機器人;inverse kinematics;walking pattern generation;stability;反向運動學;步態規劃;最高穩定度步伐軌跡
出版社: 機械工程學系所
引用: [1] Y. F. Zheng and J. Shen, “Gait Synthesis for the SD-2 Biped Robot to Climb Sloping Surface,” IEEE Trans. Robot. Automat., vol. 6, pp.86- 96, Feb. 1990. [2] C. Chevallereau, A. Formal’sky, and B. Perrin, “Low Energy Cost Reference Trajectories for A Biped Robot,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1398-1404, 1998. [3] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda Humanoid Robot,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1321-1326, 1998. [4] K. Erbatur, A. Okazaki, K. Obiya, T. Takahashi and A. Kawamura, “A Study on the Zero Moment Point Measurement for Biped Walking Robots,” in 7th Int. Workshop on Advanced Motion Control, pp. 431-436, 3-5 July 2002. [5] Q. Huang, S. Sugano, and K. Tanie, ”Stability Compensation of a Mobile Manipulator by Manipulator Motion: Feasibility and Planning,” Adv. Robot., vol. 13, no. 1, pp. 25-40, 1999. [6] C. Zhu, Y. Tomizawa, and A. Kawamura, ”Bipedal Walking Pattern Design Based on Synchronization of the Motion in Sagittal and Lateral Planes,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 4101-4107, 2005. [7] 余佳擁,“二足步行機器人的設計製作與軌跡規劃,”大同大學機械工程研究 所, 碩士論文, 2003. [8] 游英俊,“二足機器人的步態規劃與實作,”大同大學機械工程研究所, 碩士論 文, 2003. [9] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tannie, ”Planning Walking Patterns for a Biped Robot, ”IEEE Trans. Robot. Autom., vol. 17, no. 3, pp. 280-289, June 2001. [10] Q. Huang, S. Kajita, N. Koyachi, K. Kaneko, K. Yokoi, H. Arai, K. Komoriya, and K. Tanie, “A High Stability Smooth Walking Pattern for a Biped Robot,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 65-71, 1999. [11] ZMP Inc., “e-nuvo,” [12] Samsung, “S3C2440A Data Sheet,” 2004. [13] Microchip, “dsPIC30F4011/4012 Data Sheet,” 2005. [14] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd Ed., Prentice Hall, 2005. [15] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, Wiley, 2006. [16] M. Xie, Fundamentals of Robotics, World Scientific, 2003. [17] J. Cartinhour, Digital Signal Processing: An Overview of Basic Principles, Prentice Hall, 2000. [18] R. J. Schilling and S. L. Harris, Fundamentals of Digital Signal Processing, Thomson, 2005. [19] G. Franklin, J. Powell, and M. Workman, Digital Control of Dynamic System, 2nd Ed., Addison-Wesley, 1990. [20] B. Wittenmark, K. J. Astrom, and K.-E. Arzenin, “Computer Control: An Overview,” Dept. Autom. Control, Lund Inst. Technol., Lund, Sweden, Apr. 2003, Tech. Rep. [Online]. Available: [21] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd Ed., Addison- Wesley, 1995.
本論文實際設計製作一雙足機器人,推導其反向運動學解析式,並探討其軌跡規劃技術。雙足步行機器人的設計與製作,乃參考e-nuvo[11]機器人尺寸大小進行規劃設計、自由度分析,以及機構細節設計。運動學模式的推導,使用D-H法來定義機器人連桿座標系統,再利用齊次轉換矩陣來求得順向運動學數學式,再利用代數法以及幾何法推導其解析反向運動學數學式。並利用三階軟楔插入法(cubic spline interpolation)來規劃步行軌跡以及探討步行穩定度,嘗試搜尋一組最佳參數(Xsd,Xed),使對應的步行軌跡擁有最高穩定邊際(stability margin)。最後並嘗試利用微控制器以及週邊電路的實現,來完成低階伺服關節角度的控制。

This thesis designs and develops an e-nuvo-like walking biped robot. Then, an analytic inverse kinematics solution is derived using both algebraic and geometric methods. A ZMP-based walking gait planning is also considered. The forward kinematics is considered using the D-H method. In the walking gait planning, a unique solution method is suggested for the cubic spline interpolation, and a ZMP margin method is adopted for choosing the best trajectory parameters. Furthermore, a embedded microcontroller and peripheral circuits are used to construct a required low-level joint servo control system.
其他識別: U0005-1808200719590100
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.