Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHuang, Hui-Mingen_US
dc.identifier.citation1. 馬遠榮, “奈米科技,” 商周出版社, 台灣台北, 2002. 2. S. Iijima,” Helical microtubules of graphitic carbon”, Nature, 354, 56-58, 1991. 3. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff,“Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, 287, 637-640, 2000. 4. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, 334, 173-178, 2002. 5. J. Hone, M. Whitney, C. Piskoti, A. Zettl,” Thermal Conductivity of Single-Walled Nanotubes”, Physical Review B, 59, 2514-2516, 1999. 6. MJ. Small, L. Shi, and P. Kim, "Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes", Solid State Communications. 127, 181-186, 2003. 7. B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Applied Physics Letters, 79, 1172-1174, 2001 8. 張慶州, 「奈米碳管之場發射特性探討」, 國立中興大學精密工程所碩士論文, 2003 9. H. M. Cheng, Q. H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon, 39, 1447-1451, 2001. 10. S. J. Tans, A. R. Verschueren, C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393, 49-52, 1998 11. C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads”, Applied Physics Letters, 79, 2106-2109, 2001. 12. 林彥文, 「聚苯胺/奈米碳管導電複合材料之製備與電性研究」, 國立中興大學材料工程研究所碩士論文, 2004 13. L. Liu and H. D. Wagner, “Rubbery and glassy epoxy resins reinforced with carbon nanotubes”, Composites Science and Technology, 65, 1861-1868, 2005. 14. A. Allaoui, S. Bai, H.M. Cheng and J.B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite”, Composites Science and Technology, 62, 1993–1998, 2002. 15. Gary Stix, “奈米碳管勇闖晶圓廠”, 科學人, 第37期, p.28-31, 2005年三月 16. J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber, “Structural and functional imaging with carbon nanotube AFM probes”, Progress in Biophysics & Molecular Biology, 77, 73-110, 2001.. 17. 垣內弘, 賴耿陽, "環氧樹脂應用實務", 復漢出版社, 台灣台南 , 1993 18. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, ” Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls.”, Nature, 363, 605-607, 1993 19. H. Dai, “Carbon Nanotubes: Opportunities and Challenges,” Surface Science, 500, 218-241, 2002. 20. 成會明, 奈米碳管, 五南出版社, 2004 21. Poncharal, P., Berger, C., Yi, Y., Wang, Z. L. & de Heer, W. A. “Room temperature ballistic conduction in carbon nanotubes.”, The Journal of Physical Chemistry B, 106, 12104–12118, 2002. 22. M. A. Osman, D. Srivastava,” Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnology, 12, 21-24, 2001. 23. N. Hamada, S. Sawada, A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules”, Physical Review Letters., 68, 1579-1581, 1992. 24. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, Science, 287, 637-640, 2000. 25. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, 334, 173-178, 2002. 26. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley,” Fullerene Pipes”, Science, 280, 1253-1256, 1998,. 27. S. Komarnei, J. Mater. Chem., 1982, 2, 1219. 28. Yunusa A.Cengel, “Heat Transfer”, McGraw-Hill, 2004 29. Kai Zhang, Guo-Wei Xiao, Cell K Y Wong, Hong-Wei Gu, Matthew M F Yuen, Philip C H Chan, Bing Xu, “Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip Technology”, Electronic Components and Technology Conference, 60-65, 2005zh_TW
dc.description.abstract奈米碳管擁有優異的各項物理性質,而本研究著眼於其特別優異的熱傳導性質,多層奈米碳管的熱傳導係數高達3000W/m-K,因此本研究將奈米碳管以化學的方式改質,首先利用羧化(carboxylation)反應的方式讓奈米碳管帶有羧酸基(carboxylic acid groups,-COOH)進而具有水溶性,而後再利用醯化(acylation)反應使奈米碳管帶有醯氯基(acyl chloride,-COCl),因此能溶於高分子末端帶有胺基(amino group,-NH2)的化合物中,使其達到使奈米碳管均勻的分散在環氧樹酯中。而後我們利用熱電偶量測奈米碳管/環氧樹酯複合材料的升溫反應時間(Responding time)以及其熱傳導係數,結果顯示添加了奈米碳管之後,奈米碳管/環氧樹酯複合材料的反應時間(Responding time)提升了約14.3%~26.7%,而熱傳導係數則提升了約15.9%~44.9%。zh_TW
dc.description.abstractCarbon nanotubes have many excellent physical properties. This research focuses on investigating the thermal conductivity coefficient of the epoxy with different weight percentage of multi-wall carbon nanotube. We adopt the technique of surface treatment on the MWNT(multiwall-carbon nanotubes) by grafting carboxylic acid to make it soluble in water. Then, the thionyl chloride is prepared to make MWNT disperse uniformly in the epoxy resins. After uniform dispersion, the bulk specimen pieces are made into disk with 50 mm diameter and 4 mm thickness. By employing the thermal couple, we can measure the responding time and the thermal conductivity of the epoxy/carbon-nanotubes composites. The results show that the responding time of the epoxy/carbon-nanotubes composites with 0.3 wt% and 0.5 wt% MWNT increased 14.3%~26.7% relative to that of the pure epoxy. And the thermal conductivity of the epoxy/carbon-nanotubes composites is increase by 15.9%~44.9% the thermal conductivity of pure epoxy. In the present study, the thermal conductivity of this composites material does not vary with temperature for the temperature range studied here in.en_US
dc.description.tableofcontents摘要---------------------------------------------------------------I 英文摘要----------------------------------------------------------II 符號說明---------------------------------------------------------III 第一章 緒論-------------------------------------------------------01 1-1 前言--------------------------------------------------------01 1-2 研究動機與目的----------------------------------------------03 1-3 研究方向----------------------------------------------------04 第二章 文獻回顧---------------------------------------------------05 2-1 環氧樹酯----------------------------------------------------05 2-2 奈米碳管----------------------------------------------------07 2-2.1 奈米碳管的基本介紹--------------------------------------07 2-2.2 奈米碳管之性質------------------------------------------11 2-2.3 奈米碳管的官能基化--------------------------------------14 2-3 奈米碳管/環氧樹酯複合材料-----------------------------------15 第三章 實驗方法與步驟---------------------------------------------17 3-1 實驗材料----------------------------------------------------17 3-2 實驗儀器----------------------------------------------------18 3-3 實驗步驟----------------------------------------------------19 3-3.1 奈米碳管之純化------------------------------------------19 3-3.2 奈米碳管官能基化----------------------------------------21 3-3.2a 奈米碳管之羧化--------------------------------------21 3-3.2b 奈米碳管之醯化--------------------------------------23 3-3.3 製備奈米碳管/環氧樹酯複合材料---------------------------25 3-3-4 量測奈米碳管/環氧樹酯複合材料的熱傳特性-----------------27 第四章 結果與討論-------------------------------------------------30 4-1 奈米碳管/環氧樹酯複合材料之微結構探討---------------------30 4-2 奈米碳管/環氧樹酯複合材料升溫反應時間之探討--------------31 4-3 奈米碳管/環氧樹酯複合材料熱傳導係數之探討----------------33 第五章 結論-------------------------------------------------------36 參考文獻----------------------------------------------------------67zh_TW
dc.subjectthermal conductivityen_US
dc.titleMeasurments on the thermal conductivity of epoxy/carbon-nanotubes compositesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.