Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18702
標題: Monge-Ampère型方程古典解的存在性
On The Existence of Classical Solutions of Monge-Ampère Type Equations
作者: 許勝富
Hsu, Sheng-Fu
關鍵字: Monge-AmpèMonge-AmpèMonge-Ampère equation
出版社: 應用數學系所
摘要: 
在這篇論文中,我們討論當Omega是在Rn 的uniformly convex domain 時,
下列的Dirichlet problem
det(D^2u-h|Du|^2I) = f(x) in Omega
u = 0 on boundary of Omega,
古典解的存在性以及唯一性。我們證明了當f, Omega
足夠smooth 以及當h 是足夠小的正數時,上述的邊界值問題有唯一的convex 古典解。

This works deals with the existence and uniqueness of classical solutions of the Dirichlet problem
(P)
det(D2u − h|Du|2I) = f(x) in Omega
u = 0 on boundary of Omega,
in a uniformly convex domain Omega of Rn. In this thesis, we prove the existence and uniqueness of classical solutions of the problem (P) for all
small h > 0 under some smooth conditions on f and Omega.
URI: http://hdl.handle.net/11455/18702
Appears in Collections:應用數學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.