Please use this identifier to cite or link to this item:
標題: 入出口設計對微型pin-fin 柱狀陣列熱沉性能提升之實驗探討
Experimental study of inlet/outlet and interior structure microscale heat sinks performance
作者: 林岳徵
Lin, Yueh-Cheng
關鍵字: heat sink;熱沉
出版社: 機械工程學系所
引用: 參考文獻 [1] X. Yu, J. Feng, Q. Feng, Q. Wang, Development of plate fin heat sink and its performance comparisons with a plate fin heat sink, Applied Thermal Engineering 25 (2005) 173-182. [2] I. Khorunzhii, H. Gabor, R. Job, W. R. Fahrner, H. Baumann, Modeling of a pin fin heat converter with fluid cooling for power semiconductor modules, Int. J. Energy Res (2003) 1015-1026. [3] P. Sathyamurthy, P. W. Runstadler, Numerical and Experimental Evaluation of Planarand Heat Sinks, Intersociety Conference on Thermal Phenomena (1996) 132-139. [4] W.N. Kim, S.Y. Kim, B.H. Kang, CFD simulation of thermal dissipation from fan-added plate fin and offset fin heat sink, Inter Society Conference on Thermal Phenomena (2004) 213-217. [5] R.A. Wirtz, R. Sohal, H. Wang, Thermal performance of pin-fin fan-sink assemblies, ASME. J. Electron. Package 119 (1997) 26-31. [6] H.T. Chen, P.L. Chen, J.T. Horng, Design optimization for pin-fin heat sink, ASME. J. Electron. Package 127 (2005) 397-406. [7] H. Jonsson, B. Palm, Thermal and hydraulic behavior of plate fin and strip fin heat sinks under varying bypass conditions, IEEE Transactions On Components Packaging Technologies 23, No.1, (2000) 47-54. [8] D.B. Tuckerman, R.F. Pease, High-performance heat sink for VLSI, IEEE Electron. Dev. Lett. EDL-2 (1981) 126-129. [9] P.S. Lee, J.C. Ho, Experimental study on laminar heat transfer in microchannel heat sink, IEEE Inter Society Conference on Thermal Phenomena, (2002) 379-386. [10] W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Int. J. Heat and Mass Transfer 45 (2002) 2549-2565. [11] K.C. Toh, X.Y. Chen, J.C. Chai, Numerical computation of fluid flow and heat transfer in microchannels, Int. J. Heat and Mass Transfer, 45 (2002) 5133-5141. [12] H.Y. Wu, P. Cheng, An experimental study of convection heat transfer in silicon microchannels with different surface conditions, Int. J. Heat and Mass Transfer, 46 (2003) 2547-2556. [13] G.K. Gurupara, M. Sathish, Design and fabrication of micro channels for MEMS applications, Metal-Organic and Nano-Metal Chemistry, 36 (2006) 185-191. [14] J. Li, G.P. Peterson, Geometric optimization of a micro heat sink with liquid flow, IEEE transactions on components and packaging technologies, Vol. 29, No. 1, (2006) 145-154. [15] J.L. Xu, Y.H. Gan, D.C. Zhang, X.H. Li, Microscale heat transfer enhancement using thermal boundary layer redeveloping concept, Int. J. Heat and Mass Transfer, 48 (2005) 1662-1674. [16] H. R. Upadhye, S. G. Kandlikar, Optimization of Microchannel geometry for direct chip cooling using single phase heat transfer, ASME. ICMM2004 , (2004) 679-685. [17] R.H.W. Pijnenburg, R. Dekker, C.C.S. Nicole, A. Aubry, E.H.E.C. Eummelen, Intergrated micro-channel cooling in silicon, IEEE, (2004) 129-132. [18] K. Jeevan, I.A. Azid, K.N. Seetharamu, Optimization of double layer counter flow micro-channel heat sink used for cooling directly, IEEE/ Electronic Packaging Technology Conference, (2004) 553-558. [19] S.H. Chong, K.T. Ooi, T.N. Wong, Optimisation of single and double layer counter flow microchannel heat sinks, Applied Thermal Engineering, 22 (2002) 1569-1585. [20] K. Vafai, L. Zhu, Analysis of two layered micro channel heat sink concept in electronic cooling, Int. J. Heat and Mass Transfer, 42 (1999) 2287-2297. [21] X. Wei, Y. Joshi, Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling, IEEE transactions on components and packaging technologies, Vol.26, No.1(2003) 55-61. [22] A. Kosar, C. Mishra, Y. Peles, Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins, Journal of Fluids Engineering, Vol. 127, (2005) 419-430. [23] H.M. Joshi, R.L Webb, Heat transfer and friction in the offset strip-fin heat exchanger, Int. J. Heat and Mass Transfer, 30 (1987) 69-84. [24] Y. Peles, A. KOsar, C. Mishra, C. J. Kuo, B. Schneider, Forced convective heat transfer across a pin fin mircro heat sink, Int. J. Heat and Mass Transfer, 48 (2005) 3615-3627. [25] C.Y. Zhao, T.J. Lu, Analysis of microchannel heat sinks for electronics cooling, Int. J. Heat and Mass Transfer, 45 (2002) 4857-4869. [26] A.A. Zukauskas, Heat transfer from tubes in cross flowAdvances in Heat Transfer, Academic Press, New York, Vol. 8 (1972) 93–160. [27] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer 5th ed, (2001) 136-142. [28] A.Y. Gunther, W.A. Shaw, A general correlation of friction factors for various types of surfaces in cross flow, Trans. Am. Soc. Mech. Engr. 67 (1945) 643–660.
本研究主要目的為以實驗探討不同幾何形狀及出入口位置對熱沉性能增益之影響。熱沉設計之概念,主要以傳統之pin fin之構想,改變熱沉內之流動型態,達到提升整體熱傳性能之目的。

本研究之熱沉結構設計為將傳統微流道熱沉(Microchannel Heat Sink, MCHS)之平板鰭片進行切割後所獲得矩形pin fin陣列。依據pin fin陣列之排列、工作流體入出口位置之設計,本研究共探討八種熱沉設計,分別為具單一入出口之In-lined pin-fin陣列熱沉(1I1O IHS )、單一入口兩個出口之In-lined pin-fin陣列熱沉(1I2O IHS )、單一入口四個出口之In-lined pin-fin陣列(1I4O IHS )、單一入出口之Staggered pin-fin陣列熱沉(1I1O SHS)、單一入口兩個出口之Staggered pin-fin陣列熱沉(1I2O SHS)、單一入口四個出口之Staggered pin-fin陣列熱沉(1I4O SHS)及多重入出口熱沉,及具兩個入出口之In-lined pin-fin陣列熱沉(2I2O IHS )與兩個入出口之Staggered pin-fin陣列熱沉(2I2O SHS),並在相同操作條件下,探討熱沉之性能,如壓降,熱阻,及溫度分佈等,並與MCHS比較。

由實驗結果顯示,在熱阻方面,1I4O IHS、1I4O SHS、1I2O IHS、1I2O SHS等之設計均較MCHS之熱阻來的大;而2I2O SHS、2I2O IHS、1I1O SHS、1I1O IHS等設計可獲得較MCHS小之熱阻,且在所有熱沉設計中,1I1O IHS之熱阻表現最好。對於溫度分佈而言, pin-fin熱沉設計,皆較MCHS為均勻,其中以1I4O IHS溫度最為均勻。在熱沉之壓降部分,因多重出口時,能讓流體均勻分流至其它出口,因此壓降會較小,其中以 1I4O SHS設計的壓降為最小。

In this study, performances of microscale heat sink base on the modifications from the microchannel heat sink (MCHS) are studied experimentally. These modifications are intended to enhance the heat transfer by the introduction of flow disruption. The parallel walls which can be regarded as the plate fins in MCHS are replaced by pin fin arrays for introducing flow disruptions in the heat sink design. In addition to pin fin arrays, different inlet and outlet designs for fluid supply to and collection from the heat sink designs are implemented in order to introduce more flow disruption. Based on the strip fin arrangement and inlet /outlet designs, eight types of heat sinks: one inlet /one outlet inline pin-fin heat sink (1I1O IHS), one inlet /one outlet staggered pin-fin heat sink (1I1O SHS),one inlet /two outlets inline pin-fin heat sink (1I2O IHS), one inlet /two outlets staggered pin-fin heat sink (1I2O SHS), two inlets /two outlets inline pin-fin heat sink (2I2O IHS), two inlets/two outlets staggered pin-fin heat sink (2I2O SHS), one inlet /four outlets inline pin-fin heat sink (1I4O IHS) and one inlet /four outlets staggered pin-fin heat sink (1I4O SHS). The performance of MCHS is also carried out and serves as serves as the comparison basis.

From the results of experimental measurements, it is found that improvement in thermal resistance as compared with MCHS can be found in the designs of 1I4O IHS, 1I4O SHS, 1I2O IHS and 1I2O SHS. A better temperature uniformity can be obtained in the design of 1I4O IHS. From the pressure drop measurements, it is found that the heat sinks with multiple inlets and outlets can reduce the pressure drop across the heat skink as compared with that of MCHS.
其他識別: U0005-2107200717394700
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.