Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1894
DC FieldValueLanguage
dc.contributor蔡東憲zh_TW
dc.contributorDung-shian Tsaien_US
dc.contributor陳木榮zh_TW
dc.contributorMu-Rung Chenen_US
dc.contributor.advisor李吉群zh_TW
dc.contributor.advisorJi-Chun Leeen_US
dc.contributor.author黃梓輔zh_TW
dc.contributor.authorHuang, Tz-Fuen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-05T11:41:57Z-
dc.date.available2014-06-05T11:41:57Z-
dc.identifierU0005-2308200716334000zh_TW
dc.identifier.citation[1] 范光照、張郭益, 精密量測. 高立圖書有限公司. 2004;219-231. [2] Wei Gao, Kiyono S, Nomura S. A new multiprobe method of roundness measurements. Precision Engineering. 1996;19;37-45 [3] Mitsui K. Development of a new measuring method for spindle rotation accuracy by three-points method. Proceeding of 23rd International MTDR. 1982;115-121. [4] Ozono S. Tne roundness in process measurement by three-point method. J Japan Soc Precision Engineering. 1976;503-504. [5] Donaldson R. A simple method for separating error from test ball roundness error Ann. CIRP;1972; 21. [6] Bryan J B, Clouser R W, Holland E. Spindle accuracy. American Machinist .1967;4. [7] Jay F, Tu Bernd Bossmanns, Sping C, Hung C. Modeling and error analysis for assessing spindle radial error motions. Precision Engineering 21. 1997;90-101. [8] Wei Gao, Kiyono S, Nomura T. Hight-accuracy roundness measurement by a new error separation method. Precision Engineering. 1997;21;123-133. [9] Zhang,G.X.,Wang,R.K. Four-point method of roundness and spindle error measurements. Ann CIRP.1993;42,593-596. [10] Cha’o,Kuang Chen, San-Ching Wu. A method for measuring and separating cylindrical and spindle errors in machine tool rotational parts. Meas.Sci. Technol. 1999;10;76–83. [11] Horikawa, O, Sato K, Osada H, Shimokohbe. A. Roundness and Absolute Radial Motion Accuracy Measured by an Improved Reversal Method. J Japan Soc Prec Eng, JSPE, 1991;57(12);151. [12] Horikawa O, Sato K, Shimokohbe A. An Active Air Journal Bearing. Nanotechnology.1992;3;84. [13] Horikawa O, Maruyama N, Shimada M.. A low cost, high accuracy roundness measuring system. Precision Engineering.2001;25;200-205. [14] ISO/TS 12181-1 and 12181-2. Geometrical product specifications (GPS) – Roundness; Part 1: Terms, definitions and parameters of roundness; Part 2: Specification operators. International Standards Organisation, Geneva, 2003.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1894-
dc.description.abstract本篇論文是探討真圓度量測時,會造成誤差產生的幾種原因,有探針擺設誤差和軸誤差等,探針擺設誤差又可分為擺設位置的偏差和未對準工件圓心,軸誤差又可分為傾角誤差和平面軸誤差。本實驗利用兩個軸承對旋轉軸兩端徑向拘束,以降低轉軸傾角產生,因此僅討論探針擺設誤差和平面軸誤差,並建立量測誤差的數學模式,分析探針圓球半徑與待測圓半徑對量測誤差造成的影響,模擬其量測值的結果。 實驗的部分架設一台真圓度量測系統,使用三探針法分離平面軸誤差,並試圖找出三探針間較佳的間隔角度擺設,以降低非理想轉換函數造成之量測影響。最後實際量測一軸承工件來分離軸誤差得到輪廓數據,待濾波後利用最小平方圓求真圓度,並重覆量測數次,驗證真圓度量測儀的重覆性。zh_TW
dc.description.abstractThis research set up a roundness measurement machine and discuss error analysis. They have some factors to influence measurement results which are probe mounting error and spindle error. Probe mounting error includes both probe deviation and center misalignment. Spindle error can be divide into two parts. Those are tilt of the spindle and two-dimensional spindle motion. In this experiment, the tilt of spindle is reduced by constraining the spindle at its two extremities with bearings. We consider the probe mounting error and the two-dimensional spindle motion only in our approach. We present an exact geometric model while consider the radius of the probe. Finally, the simulate results are demonstrated. In the experiment, we set up a roundness measurement system and used the three-probe method to separate the two-dimensional spindle radial error motion. We arrange probes properly to reduce imperfection of the transfer function. Finally we compute the least squares roundness of a cylindrical workpiece. We measure the roundness of this cylindrical workpiece five times to verify the repeatability of our system.en_US
dc.description.tableofcontents目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅷ 符號說明 Ⅸ 第一章 緒論 1 1.1 前言 1 1.2 研究目的與方法 1 1.3 真圓度量測簡介 1 1.3.1 真圓度量測之參考圓 2 1.3.2 真圓度之量測法 4 1.4 文獻回顧 6 1.5 論文架構 7 第二章 誤差理論分析 8 2.1 軸誤差影響 8 2.1.1 轉軸平面位移誤差 9 2.1.2 探頭半徑造成的影響 15 2.2 三探針法介紹 17 2.3 探針擺設誤差分析 19 第三章 真圓度量測儀機構 23 3.1 真圓度量測儀 23 3.1.1 真圓度量測儀架設 23 3.2 探針機構架設 26 3.2.1 探針機構誤差估計 29 3.3 量測步驟 31 第四章 實驗結果與分析 34 4.1 量測值模擬與分析 34 4.1.1 模擬三探針法分離軸誤差 34 4.1.2 探針擺設誤差模擬 36 4.2 真圓度量測 39 4.2.1 探針擺設間隔角度分析 40 4.2.2 量測結果與濾波 43 4.2.3 量測數據重覆性驗證 46 第五章 結論與未來展望 48 5.1 結論 48 5.2 未來展望 48 參考文獻 49 圖目錄 圖1.1 最小平方圓誤差示意圖 2 圖1.2 最小環带圓誤差示意圖 3 圖1.3 最大內切圓誤差示意圖 3 圖1.4 最小外接圓誤差示意圖 4 圖1.5 直徑法量測奇數與偶數凸圓示意圖 5 圖1.6 利用V型塊量測真圓度示意圖 5 圖2.1 產生軸誤差示意圖 8 圖2.2 轉軸平面偏移誤差示意圖 9 圖2.3 轉軸平面偏移誤差量測點局部放大示意圖 10 圖2.4 參考圓平面偏移誤差示意圖 11 圖2.5 實驗之真圓度儀軸承位置示意圖 13 圖2.6 反轉法分離軸誤差示意圖 14 圖2.7 待測圓偏移時與探針接觸圓球位移示意圖 15 圖2.8 真圓度量測之三探針法架設示意圖 17 圖2.9 探針擺設誤差示意圖 19 圖2.10 探針擺設誤差量測點局部放大示意圖 20 圖3.1 自行架設之真圓度量測儀 25 圖3.2 自行架設之探針機構 28 圖3.3 利用PZT驗證探針準確度圖 29 圖3.4電容式位移感測器位移誤差量 30 圖3.5 三探針法調整探針擺設角度示意圖 31 圖3.6 儀器設備接線示意圖 32 圖4.1 平面軸偏移誤差模擬示意圖 34 圖4.2模擬三探針法分離軸誤差數據圖 35 圖4.3 探針擺設角度誤差模擬示意圖 36 圖4.4 探針擺設角度真圓度誤差模擬數據圖 37 圖4.5工件擺設偏心量對量測真圓度值影響 38 圖4.6 軸承工件量測圖 39 圖4.7 探針間隔 之轉換函數圖形 42 圖4.8 真圓度工件量測數據 43 圖4.9 真圓度數據濾波圖 45 圖4.10 真圓度量測儀分離軸誤差後探針數據重覆性 47 圖4.11 真圓度量測儀轉軸偏移數據重覆性 47 表目錄 表3.1 真圓度量測儀零件規格表 24 表3.2 探針機構零件規格表 26 表3.3 利用PZT位移所得雷測干涉儀與感測器間誤差 30 表4.1 探針擺設角度誤差模擬數據點 37 表4.2 待測圓擺放偏心對真圓度影響 38 表4.3 探針組合角度權重 41 表4.4 計算頻率有關最小平方圓真圓度 45zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308200716334000en_US
dc.subjectroundnessen_US
dc.subject真圓度zh_TW
dc.subjectthree-probe methoden_US
dc.subjectspindle error separationen_US
dc.subject三探針法zh_TW
dc.subject軸誤差分離zh_TW
dc.title三探針真圓度量測軸誤差分離技術之研究zh_TW
dc.titleThree-probes roundness measurement and spindle error separationen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.