Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1922
標題: 適應性模糊濾波器結合置換誤差為基礎之演算法以改善主動噪音控制之性能
Adaptive Fuzzy Filter Incorporating with Commutation Error-based Algorithm to Improve Active Noise Control Performance
作者: 呂少瑜
Lu, Shau-Yo
關鍵字: Adaptive fuzzy filter;適應模糊濾波器
出版社: 機械工程學系所
引用: Luge, P., Process of Silencing Sound Oscillation, U.S. Patent, No.2043416, 1936. [2] Widrow, B. and Hoff, M. E., “Adaptive Switching Circuits”, IRE WESCON Conv. Rec, part 4, pp. 96-104, 1960. [3] Burgess, J. C., “Active Adaptive Sound Control in a Duct: A Computer Simulation”, J. Acoust. Soc. Am., Vol. 70, pp. 715-726, September 1981. [4] Kuo, S. M. and Morgan, D. R., Active Noise Control System: Algorithms and DSP Implementations, 605 Third Avenue, New York, 10158-0012, 1996. [5] Kuo, S. M. and Morgan, D. R. “Active Noise Control: A Tutorial Review”, Proceeding of the IEEE, Vol. 87, pp. 943-975, June 1999. [6] Gan, W. S. and Kuo, S. M. “An Integrated Audio and Active Noise Control Headsets”, IEEE Trans. on Consumer Electronics, Vol. 44, pp. 242-247, May 2002. [7] 陳映先,適應性IIR濾波器於主動噪音控制之應用,國立中興大學 機械工程研究所,碩士論文,2006。 [8] Ching-Wen Liao, Jong-Yih Lin. “New FIR filter-based adaptive algorithm incorporating with commutation error to improve active noise control performance”, automatice, ScienceDirect, Vol. 43, pp. 325-331, 2007. [9] 蘇英筑,格子型適應性IIR濾波器於主動噪音控制之應用,國立中興大學機械工程研究所,碩士論文,2006。 [10] 陳俊弘,類神經網路於主動式噪音控制之應用-使用頻譜整型之第二路徑,國立中興大學機械工程研究所,碩士論文,2005。 [11] 黃靜宜,狹帶延遲類神經網路於主動噪音控制之應用,國立中興大學機械工程研究所,碩士論文,2006。 [12] Li-Xin Wang and Jerry M. Mendel. “Fuzzy Adaptive Filters, with Application to Nonlinear Channel Equalization”, IEEE Trans. on Fuzzy System, Vol. 1. No. 3. August 1993. [13] W. S. Gan, “Designing a fuzzy step size LMS algorithm”, Proc. Inst. Elect. Eng., Vision, Image, Signal Process., Vol. 144, No. 3, pp.261-266, Oct. 1997. [14] Chang, C. Y. and Shyu, K. K., “Active Noise Cancellation with a Fuzzy Adaptive Filter-x Algorithm”, IEE Proceedings, Circuits, Devices and Systems, Vol. 150, pp. 416-422, October 2003. [15] Hsuan-Yu Lin, Chia-Chang Hu, Yu-Fan Chen, and Jyh-Horng Wen, “An Adaptive Robust LMS Employing Fuzzy Step Size and Partial Update”, IEEE Signal Processing Letters, Vol. 12, No. 8, August 2005. [16] 廖慶文,使用雙音圈制動喇叭於管路之適應性主動噪音控制, 國立中興大學機械工程研究所,博士論文,2006。 [17] Li-Xin Wang, A Course in Fuzzy Systems and Control, Prentice Hall PTR, pp. 168-179, 1997.
摘要: 
在本論文中,吾人考慮將適應性模糊濾波器應用於主動噪音控制系統上。適應性模糊濾波器使用最小梯度演算法(LMS)於訊號處理中,已經發展的相當成熟了,但直接將該濾波器應用於主動噪音控制系統上,因為沒有考慮第二路徑動態效應,很有可能會導致失敗或是收歛過於緩慢。因此,解決方法就是將濾波器參考訊號先濾過第二路徑,再輸入到濾波器。另外,吾人再加入置換誤差(CE)的觀念並與適應性模糊濾波器結合,可得到一個以CE為基礎的適應性模糊濾波器,並應用在主動噪音控制上,以提高收歛速度與噪音抑制性能。接著再以模擬與實驗來證明,加入了置換誤差後的適應性模糊濾波器不管是在噪音的抑制效果或是在收歛速度上的能力,都有相當良好的效果。

In this thesis, we consider adaptive fuzzy filter for the purpose of active noise control (ANC). A least mean square (LMS) algorithm has been developed for a fuzzy filter as a nonlinear adaptive filter in the application of signal processing. Directly applying the adaptive fuzzy filter with the LMS algorithm in the ANC applications may lead to failure or slow convergence due to the existence of dynamic effects of the secondary path. Therefore, a filtered reference signal based LMS algorithm is proposed to overcome this problem. In addition, a commutation error (CE) term is defined and incorporated to obtain a CE-based adaptive algorithm for fuzzy filters in ANC applications. Results of computer simulation show that our proposed adaptive algorithms can achieve better ANC performance in terms of convergence rate and level of noise reduction as compared to that of the existing LMS algorithm. Results of experiment demonstrate the improvement and support the effectiveness of the proposed algorithms.
URI: http://hdl.handle.net/11455/1922
其他識別: U0005-2711200712370300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.