Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1928
標題: 犬關節膝蓋骨脫臼防止植體與其手術工具之設計製造及分析
Design, Manufacturing and Analysis of Canine Patellar Luxation Preventing Implant and Surgical Instrument
作者: 柯智虔
Ke, Chih-Chine
關鍵字: 膝蓋骨脫臼;Patellar Luxation;膝蓋骨脫臼防止植體;手術工具;電腦工程分析;電腦輔助設計;電腦輔助製造;生物力學實驗;統計分析;Pearson相關係數;迴歸分析;Patellar Luxation Preventing Implant;Surgical Instrument;Computer-Aided Engineering;Computer-Aided Design;Computer Aided Manufacturing;Biomechanical Experiments;Statistical Analysis;Pearson Correlation Coefficient;Regression Analysis
出版社: 機械工程學系所
引用: 參考文獻 ASTM Designation:F139-86 Standard Specification for Stainless Steel Sheet and Strip for Surgical Implants, ”Annual Book of ASTM Standards, Medical Devices Emergency Medical Services”, Vol.13.01, pp.29-31,1990. ASTM Designation:F899-84 Standard Specification for Stainless Steel Billet, Bar, and Wire for Surgical Instruments, ”Annual Book of ASTM Standards, Medical Devices Emergency Medical Services”, Vol.13.01, pp.287- 291,1990. ASTM Designation:F543-02 Standard Specification and Test Methods for Metallic Medical Bone Screws, ”Annual Book of ASTM Standards, Medical Devices Emergency Medical Services”, Vol.03.01,2002(Reapproved 2006). ASTM Designation:F564-02 Standard Specification and Test Methods for Metallic Bone Staples, ”Annual Book of ASTM Standards, Medical Devices Emergency Medica Services”, Vol.03.01,2002(Reapproved 2006). Brinker W.O., Olmstead M.L., Sumner-Smith G. and Prieur W.D., ”Manual of Internal Fixation in Small Animals”, Springer-Verlag, Berlin Heidelberg, pp.101-103,1998. Cheng C.C., Ho W.P. and Liau J.J., ”Biomechanical Study of Bone-Patellar Tendon-Bone and Bone-ACL-Bone Grafts”, Journal of Medical and Biological Engineering, Vol.22(2), pp.103-107,2002. Hsu C.C., Chao C.K., Wang J.L., Hou S.M., Tsai Y.T. and Lin J., ”Increase of Pullout Strength of Spinal Pedicle Screws with Conical Core: Biomechanical Tests and Finite Element Analyses”, Journal of Orthopaedic Research, Vol.23, pp.788-794,2005. Diop A., Maurel N. and Viguier E., ”An In Vitro Biomechanical Study of Bone Plate and Interlocking Nail in a Canine Diaphyseal Femoral Fracture Model”, Veterinary Radiology & Ultrasound, Vol.30, pp.397-408,2001. Daniel C., Werner G., Michael T.G., Helmut W., Brunnberg L. and Wolf K.J., ”The Correlation of Canine Patellar Luxation and the Anteversion Angle as Measured Using Magnetic Resonance Images”, Veterinary Radiology & Ultrasound, Vol.42, pp.113-118,2001. Ferguson J., ”Patellar luxation in the Dog and Cat” In Practice, Vol.19, pp.174-184,1997. Hayes A.G., R.J.Boudrieau and L.L.Hugenord., ”Frequency and Distribution of Medial and Lateral Patellar Luxation in Dogs:124Cases”, Journal of the American Veterinary Medical Association, Vol.205(5), pp.105-109,1979. Hamme D.L., ”Surgical Treatment of Grade IV Patellar Luxation in the Neoambulatory Dog”,Journal of the American Veterinary Medical Association, Vol.174(8), pp.815-818,1979. Napier J.R., ”The Prehensile Movement of the Human Hand”, Journal of bone and Joint surgery, Vol.38, pp.902-913,1956. Roush J.K., ”Canine Patellar Luxation”, Veterinary Clinics of North America: Small Animal Practice, Vol.23(4), pp.855-868,1993. Ruble R.P., Hird D.W., ”Congenital Abnormalities in Immature Dogs from a Pet Store-253 Cases(1987-1988)”, Journal of the American Veterinary Medical Association, Vol.202, pp.633-636,1993. Rashmir-Raven A.M., Richardson D.C., Aberman H.M. and DeYoung D.J., ”The Response of Cancellous and Cortical Canine Bone to Hydroxylapatite-Coated and Uncoated Titanium Rods”, Journal of Applied Biomaterials, Vol.6, pp.237-242,1995. Richard W., Michael G., ”Characterizing Human Hand Prehensile Strength by Force and Moment Wrench”, Ergonomic, Vol.44(15), pp.1392-1402,2001. Steven K.B., John R.M., Greg R.W., Apostolos K. and Ronald F.Z., ”Early Regional Adaptation of Periarticular Bone Mineral Density after Anterior Cruciate Ligament Injury”, Journal of Applied Physiology, Vol.89, pp.2359-2364, 2000. Pacific Research Laboratories.Vashon,WA.http://www.sawbones.com/(2007.09) VetCentric.com.Inc,http://www.vetcentric.com/(2007.10) Zapp Group,http://www.zapp.com/(2007.12) 于大雄,”手術室常見技術及照護手冊”,合記圖書出版社,頁15-18,2006。 小野憲ㄧ郎,今井壯一,多川政弘,安川明男,後藤直彰,”イラストでみる犬の病気”,凸版印刷株式会社,頁84-95,1996。 尤春風,”CATIA V5使用手冊”,進階應用篇,知城數位科技股份有限公司,2003。 王正一,”醫學工程原理與應用”,正中書局,頁101-104,1996。 王盈錦,”生物醫學材料”,國立編譯館,頁227-230,2002。 江俊賢,”高齡化社會之文具設計—以訂書機為例”,國立雲林科技大學工業設計系碩士學位論文,頁10-12,2005。 吳明隆,涂金堂著,徐慧如編輯,”SPSS與統計應用分析”,五南圖書出版公司,2005。 杜黎蓉,林博正,”CATIA電腦輔助設計與實務應用”,全華圖書股份有限公司,2000。 沈明來,”生物統計學入門-第五版” ,九州圖書股份有限公司,2007。 林清福,李建華,”CATIA V5產品造型實務設計”,高立圖書股份有限公司,2004。 張仕杰,廖建洋,”犬之雙側性膝蓋骨脫臼”,台中市獸醫師公會會訊專題報告,2004。 張紹勳,林秀娟,”初等統計與高等統計",松崗電腦公司,1993。 張雲景,賴礽仰翻譯,”SPSS統計軟體的應用-11.0版”,華騰文化股份有限公司,2003。 張榮誌,”手動式骨科手術器械之製程設計與製作",國立中興大學機械工程研究所,碩士論文,2006。 陳協慶,林瑞豐,林偉祥,”握柄厚度影響手指最大屈曲施力與其最佳握距之研究”,朝陽科技大學工業工程與管理系,行政院國家科學委員會專題研究計畫,2000。 陳順宇,”迴歸分析”,華泰文化事業股份有限公司,頁21-28,2000。 陳徹,”SPSS統計分析”,碁峯資訊股份有限公司,2001。 陳燕輝,”小動物外科學袐笈”,合記圖書出版社,頁271-273,2005。 黃勇三,詹勝利,”犬解剖學指引”,藝軒圖書出版社,頁60-67,2003。 程毅豪,增仲瑩,編譯, Stanton,A.G.原著,”簡明生物統計學”,合記圖書出版社,2000。 楊榮森,”手術室技術手冊原理與應用”,合記圖書出版社,頁150-154,1991。 葉哲政,”生醫用金屬產業全球佈局與競爭策略”,金屬中心,2006。 葉怡成,實驗計劃法-製程與產品最佳化,五南圖書出版公司,2001。 蔡盈宗,”椎弓足骨螺絲骨咬合強度之生物力學測試與有限元素分析”,國立台灣科技大學機械工程研究所,碩士論文,2003。 鄭政雄,”生醫用材料表面處理之研究",國立台北科技大學,碩士論文,頁32-36,2003。 鄧欣掙,李景恆,何志遠,張福祥,”機械工程設計”,全華科技圖書股份有限公司,1991。 賴朝鍵,”逆向工程重建CAD模型之研究與實例探討",國立成功大學機械工程研究所, 碩士論文,2001。 謝天,杜杰憲,林孫權,張清棟,”全關節內側脫臼”,高雄市獸醫師公會會刊 第五十五期,頁15-18,2004。 闕山璋,”骨科生醫材料之發展趨勢”,生技與醫療器材報導 11期,1998。 蘇金佳 編譯, Gere,J.M. and Timoshenko,S.P.原著,”材料力學”,東華書局股份有限公司,頁925-933,1989。 羅至倫,”長骨骨髓內釘之設計與力學分析",國立台灣大學機械工程研究所,碩士論文,2003。 網站資料(網址後面之日期,係為上網造訪時間): 工業技術研究院-醫療器材驗證室,http://www.ksmd-si.org.tw/(2007.04) 社團法人臺中市獸醫師公會,http://www.ctcvma.org.tw/(2007.11) 台灣三豐儀器股份有限公司,http://www.mitutoyo.com.tw/(2007.12) 經濟部標準檢驗局,http://www.bsmi.gov.tw/(2007.03) にほんまつ動物病院,http://nihon.matsu.net/(2007.04)
摘要: 
摘 要
本研究係針對於開發、改善及分析,應用於治療犬膝蓋骨脫臼(Patellar Luxation)的膝蓋骨脫臼防止植體(Patellar Luxation Preventing Implant)。進行植體的開發製作與手術工具的設計、分析及樣品加工,與犬股骨模型製作。所運用到的技術包括:電腦工程分析(CAE)、電腦輔助設計(CAD)、電腦輔助製造(CAM)、逆向工程(RE)、人因工程的技術。使用電腦輔助設計、製造、分析軟體,設計、製造出一套適合臨床使用之手術工具,並開發膝蓋骨脫臼防止植體加工技術,讓成品成功應用於臨床治療上。本文分為三大部份,第一部份為脫臼防止植體及手術工具(Surgical Instrument)的開發、設計與製作樣品;第二部份為膝蓋骨脫臼防止植體生物力學(Biomechanical)實驗;第三部份為生物力學實驗結果的統計分析。

在做膝蓋骨脫臼防止植體生物力學實驗方面,針對脫臼防止植體與股骨界面之間的骨咬合強度(Occlusion strength)作研究分析。將植體在假骨上作拉出及壓入實驗,分析及討論各種幾何尺寸之設計在性能表現上之差異。

分析結果定義為:(1)不同角度拉出力量之平均數,未有統計學上之差異性,說明脫臼防止植體的鬆脫力量,不會受到角度的影響。(2)脫臼防止植體骨咬合強度之生物力學特性,皆受到高度、寬度、厚度影響;影響因素的Pearson相關係數:高度及寬度是厚度的兩倍。(3)導出植體三變數函數廻歸方程式之經驗式,驗證後誤差在標準值95%的信賴區間內;此經驗式輸入外型尺寸後可得到拉出、壓入力量的大小,就外型尺寸與力量之關係提出定量經驗式。(4)本文提出可依據患犬體重分數個等級,植體的設計或使用者可配合廻歸方程式之控制、預測功能。找出每個等級的拉出力(越大植入手術越成功)、與壓入力(越小越容易手術),反求所需之幾何外型尺寸。

經此生物力學實驗及結果分析後,可建置一套適切膝蓋骨脫臼防止植體生物力學實驗模式與實驗結果的分析方法,作為膝蓋骨脫臼植體臨床治療應用之參考。

Abstract
The aim of this study focuses on the development, improvement and analysis of patellar luxation preventing implants for the treatment of dogs with patellar luxation. The contents include development and manufacturing of the implant, the design, analysis, and prototyping of surgical instrument, and manufacture of dog's femur model. Technologies applied in this study include computer-aided engineering (CAE), computer-aided design (CAD), computer-aided manufacturing (CAM), reverse engineering (RE), and human factors technology. An appropriate surgical instrument for surgical operation and an implant production process which generates products successfully applied to dog's clinical treatment are developed. The content is divided into three parts. The first part includes the development and design of implants and surgical instruments and production of prototypes. Then , the biomechanical experiments of implants are conducted. Finally, the statistical analysis from the results of biomechanic experiments is performed.

For the implant biomechanic experiment, the analysis on the interface strength between implant and the femur bone occlusion is the focus. Press-in and pull-out experiments for the implants are performed on the sawbone. The performance due to the geometry variation of the implants is analyzed and discussed.

The experimental results are defined as follows. (1) the average pull-out force with different angles does not show statistically significant difference. The implant loosening force will not be affected by angle changes. (2) the implant occlusion strength is subjected to change due to varying height, width and thickness. For the factors of Pearson correlation coefficient, height and width are twice as influential as the thickness. (3) A functional regression equation with three variables of implants is derived and the error with standard value of confirmation is in the 95% confidence interval. Inputing geometric dimensions of the implants into the regression equation, the pull-out and press-in strength can be obtained. This empirical quantitative formula is used to relate the geometric dimensions of the implants to the strength. (4) Using the research results, the implant designers or users can identify pull-out strength (the greater, the more successful of the implantation), and the press-in force (the smaller, the easier for surgery) using the control and predictive functions of the regression equation according to weight levels of dogs. After the pull-out and the press-in forces being calculated, the geometric dimensions of the implants can be obtained by reverse processing.

After this, an appropriate implant experimental model and an analysis method for the design and use of the implant can be established. The resulting method can be applied to the clinical implantation for the treatment of the canine patellar luxation.
URI: http://hdl.handle.net/11455/1928
其他識別: U0005-2801200821575300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.