Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1932
標題: 內建熱源式甲醇重組器性能量測
Measurement of the Performance of the Internal Heater Type Methanol Reformer
作者: 何建儒
Ho, Chien-Ju
關鍵字: Methanol;甲醇;Reformer;重組器
出版社: 機械工程學系所
引用: 參考文獻 【1】 彭建翔,“2005年燃料電池產業調查,” 建福資訊服務企業 社,2005年12月。 【2】 宋隆裕,“ 燃料電池用甲醇重組器之測試研究,” 能源季刊, 第24卷,pp. 69-88,83年1月。 【3】 黃大仁,“小型甲醇重組器技術開發,” 工業技術研究院能資 所研究計畫,民國89年。 【4】 G. Park, S. D. Yim, Y. G. Yoon, D. J. Seo, K. Eguchi, C. S. Kim, “ Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems, ” Catalysis Today, Vol.110, pp.108-113, 2005. 【5】 C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, A. B. Jensen, “ Integration of high temperature PEM fuel cells with a methanol reformer, ” Journal of Power Sources, Vol.145, pp.392-398, 2005. 【6】 D. J. Seo, W. L. Yoon, Y. G. Yoon, S. H. Park, G. G. Park, C. S. Kim, “ Development of a micro fuel processor for PEMFCs, ” Electrochimica Acta, Vol.50, pp.719-723, 2004. 【7】 陳泓政,“ 燃料電池用之甲醇重組器氫氣產生研究, ”碩士論 文,成功大學航空太空工程研究所,民國91年。 【8】 吳國華,“ 超音波霧化於燃料電池甲醇重組器製氫研究, ” 碩 士論文,成功大學航空太空工程研究所,民國92年。 【9】 林弘民,“ 燃料電池用自發熱甲醇重組器性能量測與數值模 擬,” 碩士論文,中興大學機械工程研究所,民國93年。 155 【10】 詹前歆,“ 燃料電池用之甲醇重組器冷啟動過程之產氫特性 研究,” 碩士論文,崑山科技大學機械工程研究所,民國94 年。 【11】 林仁信,“ 自發熱甲醇重組器製氫性能量測,” 碩士論文,中 興大學機械工程研究所,民國94年。 【12】 K. Takeda, A. Baba, Y. Hishinuma, T. Chikahisa, “ Performance of a methanol reforming system for a fuel cell powered vehicle and system evaluation of a PEFC system, ” JSAE, Vol.23, pp.183-188, 2002. 【13】 W. Wiese, B. Emonts, R. Peters, “ Methanol of steam reforming in a fuel cell drive system, ” Journal of Power Source, Vol.84, pp.187-193, 1999. 【14】 C. Alejo, R. Lago, M. A. Pena, J. L. Fierro, “ Partial Oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts, ” Applied Catalysis A : General, Vol.162, pp. 281-297, 1997. 【15】 Y. M. Lin, M. H. Rei, “ Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor, ” Catalysis Today, Vol.67, pp.77–84, 2001. 【16】 張美瑩,“Agilent 6890 GC 氣相層析儀軟體操作,”安捷倫科 技有限公司,2006年6月。 【17】 J. D. Holladay, E. O. Jones, M. Phelps, J. Hu, “Microfuel processor for use in a miniature power supply, ” Journal of Power Sources , Vol.108, pp.21-27, 2002. 【18】 J. Han, S. M. Lee, H. Chang, “Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle, ” Journal of Power Sources, Vol.112, pp. 484-490, 2002. 【19】 L. Pan, S. Wang, “Acompact integrated fuel-processing system for proton exchangemembrane fuel cells, ” Journal of Hydrogen Energy, Vol.31, pp.447-454, 2006. 【20】 J. Han, I. Kim, K. S. Choi, “High purity hydrogen generator for on-site hydrogen production, ” Journal of Hydrogen Energy, 156 Vol.27, pp.1043-1047, 2002. 【21】 Skoog, Leary, “Principles of Instrumental Analysis, ” USA,1994. 【22】 財團法人工業技術研究院, http://www.itri.org.tw/
摘要: 
摘 要
本研究設計三種不同型式之內建熱源式甲醇重組器,採用甲醇、
水、空氣當作重組燃料,用現行機車電子控制式噴射引擎之燃油噴射
器,作為本甲醇重組器進料之控制使用,並將機車火星塞點火系統移
植到重組器上,藉由訊號產生器供給CDI 點火訊號,使火星塞產生
跳火,燃燒甲醇產生穩定火焰,提供本實驗反應所需之熱源。並利用
SUD-CHEMIE 公司所生產之MDC-3 型商品化觸媒,塗佈於機車用
不鏽鋼蜂巢載體上參與甲醇重組製氫反應。
實驗結果方面,第一種型式重組器若使用POM(Partial Oxidation
of Methanol)進行反應,當甲醇進料量為0.076mol/min、O/C=0.75,其
甲醇消耗率為87.73%,氫氣產出率為80.93%,重組器熱效率69.45%
為最佳值。第二種型式重組器使用ATRM(Auto Thermal Reforming of
Methanol)進行反應,當甲醇進料量為0.1447mol/min、O/C=0.5,
S/C=0.71,其甲醇消耗率為54.02%,氫氣產出率為44.42%,重組器
熱效率60.94%為最佳值。第三種型式重組器附加有熱交換器,若使
用ATRM 進行反應,當設定燃燒端甲醇進料量0.036mol/min、
O/C=0.49,重組端甲醇進料量0.038mol/min、O/C=0.64、S/C=1.55,
其甲醇消耗率為68.43%,氫氣產出率為95.33%,整體重組器熱效率
33%為最佳值,若僅考慮重組端之熱效率,則熱效率可達70.38%。

Abstract
The purpose of this study is to design three types are used of internal
heater of methanol reformer. The mixture of methanol, water and air as
reformed fuel, and then using the E.F.I. (Electric Fuel Injection) system
of motorbike engine to control the feeding of methanol into reactor. The
firing system of ignition plugs of motorbike into basic reformer, and
using function generator to provide CDI (Capacity Discharge Ignition)
the signal of firing which can make ignition plugs to produce miss fires,
then it can burn the methanol to produce the stable fire to supply the heat
resource that this experiment needs. Furthermore, commercialized
catalyst MDC-3 that is produced by the SUD-CHEMIE Company. And
the catalyst is spread on the stainless steel honeycomb carrier of the
motorbike, which is reacted with the methanol.
As to the result of this experiment, The first type, using POM
(Partial Oxidation of Methanol), at feeding rate of methanol 0.076
mol/min、O/C=0.75, the best methanol dissipation rate and hydrogen
production rate is 87.73% and 80.93%,and reformer thermal efficiency is
69.45%.The second type, using ATRM (Auto Thermal Reforming of
Methanol), at feeding rate of methanol 0.1447 mol/min、O/C=0.5、
S/C=0.71, the best methanol dissipation rate and hydrogen production
rate is 54.02% and 44.42%,and reformer thermal efficiency is
60.94%.The third model have a heat exchanger, if using ATRM (Auto
Thermal Reforming of Methanol) to react with the methanol, when the
burner feeding rate of methanol is 0.036 mol/min、O/C=0.5, the reformer
feeding rate of methanol is 0.038 mol/min、O/C=0.64、S/C=1.55, the
iv
highest methanol dissipation rate and hydrogen production rate is 68.43%
and 95.33%, total reformer thermal efficiency showed 33%, if allow
reformed thermal efficiency, reformer thermal efficiency is 70.38%.
URI: http://hdl.handle.net/11455/1932
其他識別: U0005-2808200709425200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.