Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1941
標題: 積體化同軸全像儲存系統之研究
Study of the Integrated Collinear Holographic Storage System
作者: 高子斌
Gao, Zi-Bin
關鍵字: photorefractive crystal;光折變晶體;diffractive optical element;collinear holographic;繞射光學元件;同軸式全像儲存系統
出版社: 機械工程學系所
引用: [1]王瑞鑫, “穿透式全像光碟光學讀取之研究”, 國立中央大學光電研究所碩士班論文, 2004 [2]于美文, “光全息學及其應用”, 北京理工大學出版社, 1996 [3]宋菲君, “近代光學信息處理”, 北京理工大學出版社, 1997 [4]徐瑞頤, “光盤式儲存系統設計原理”, 國防工業出版社, 1999 [5]施錫富, “多波長光學讀寫頭技術”, 科儀新知, 第二十六卷第四期, p.39-47, 2005 [6]H. F. Shih, “Optical head with two wavelength in single path using holographic optical element”, Japanese Journal of Applied Physics, vol.44, no.4A, p.1797-1802, 2005 [7]T. H. Chao, J. Hanan, G. Reyes, “Compact digital holographic memory”, Proceeding 2004 non-volatile memory technology system, p.5-9, 2004 [8]L. Hesselink, S. S. Orlow, M. C. Bashaw, “Holographic data storage system”, Proceeding of the IEEE, vol.92, no.8, p.1231-1280, 2004 [9]S. Wawata, “Photorefractive optics in three-dimensional digital memory”, Proceeding of the IEEE, vol.87, no.12, p.2009-2020, 1999 [10]C. Denz, K. O. Muller, T. Herimann, T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing”, IEEE Journal of Selected Topic in Quantum Electronic, vol.4, no.5, p.832-839, 1998 [11]M. H. Yukselici, R. Ince, A. T. Ince, “Data storage characteristics of iron doped LiNbO3 under a 90∘geometry two-beam coupling configuration”, Optics and Laser in Engineering, vol.42, no.3, p.277-287, 2004 [12]H. Hormai, X. Tan, J. Li, “Collinear holography”, Applied Optics, vol.44, no.13, p.2575-2579, 2005 [13]H. Hormai, X. Tan, “Collinear technology for a holographic versatile disk”, Applied Optics, vol.45, no.5, p.910-914, 2006 [14]H. Hormai, X. Tan, “Holographic versatile disk system”, Proceeding of SPIE, vol.5939, p.1-9, 2005 [15]H. Hormai, J. Li, “A novel collinear optical setup for holographic data storage system”, Proceeding of SPIE, vol.5380, p.297-303, 2004 [16]X. Tan, H. Hormai, “Analysis of a collinear holographic storage system: introduction of pixel spread function”, Optics Letters, vol.31, no.9, p.1208-1210, 2006 [17]H. Hormai, X. Tan, J. Li, K. Suzuki, “Wavelength margin analysis in advanced collinear holography”, Japanese Journal of Applied Physics, vol.44, no.5B, p.3493-3494, 2005 [18]X. Tan, H. Horimai, “Shift selectivity of the collinear holographic storage system”, Optical Data Storage Topic Meeting, p.153-155, 2006 [19]X. Tan, H. Horimai, “Collinear technology for holographic versatile disk system”, Proceeding of SPIE, vol.6343, p.62432W1-62432W9, 2006 [20]H. Horimai, X. Tan, “Read-only holographic versatile disk system using laser diode”, Proceeding of SPIE, vol.6252, p.62520Z1-62520Z5, 2006 [21]H. Horimai, X. Tan, “Holographic information storage system today and feature”, IEEE Transactions on Magnetics, vol.43, no.2, p.943-947, 2007 [22]蘇威佳, “三維亂相編碼之體積全像及其應用”, 國立中央大學光電研究所碩士班論文, 2001 [23]李宣皓, “鈮酸鋰全像碟片多層次儲存之研究”, 私立大同大學光電研究所碩士班論文, 2004 [24]陳聰建, “亂相編碼之體積全像相位鑰匙的重建”, 國立中央大學光電研究所碩士班論文, 2004 [25]林佑年, “體積光柵應用於微物3D掃瞄之研究”, 國立中央大學光電研究所博士班,論文 2000 [26]陳逸明, “利用亂相編碼與體積全像之全光學式光纖感測系統”, 國立中央大學光電研究所碩士班論文, 2000 [27]W. T. Rhodes, T. Asakura, “Optical sciences”, http://www.springer.de/phys/ [28]A. Ashkin, G. D. Boyd, J. M. Dziedzic R. G. Smith, A. A. Bullman, J. J. Lecinstein, K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3”, Applied Physics Letters, vol.9, no.1, p.72-74, 1966 [29]F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3”, Journal of Applied Physics, vol.40, no.8, p.339-3396, 1969 [30]L. Young, W. K. Y. Wong, M. L. Thewait, W. D. Crnish, “Theory of formation of phase hologram in lithium niobate”, Applied Physics Letters, vol.24, no.6, p.264-265, 1974 [31]G. A. Alphonse, R. C. Alig, O. L. Staebler, W. Philips, “Time-dependent characteristics of photo-induced space chare field and phase hologram in lithium niobate and other photorefractive materials”, RCA Review, 19753 [32]D. VonderLinde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information”, Journal of Applied Physics, vol.8, 1975 [33]D. M. Kim, R. R. Shah, T. A. Rabsonand, F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation”, Applied Physics Letters, vol.28, no.6, p.338-340, 1976 [34]N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. steady state”, Ferroelectrics 22, 949, 1979 [35]J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate”, Journal of Applied Physics, vol.51, no.3, p.1297-1305, 1980 [36]劉榮平, “鈮酸鋰晶體之光扇效應與應用”, 國立中央大學光電研究所博士班論文, 2004 [37]余逸群, “利用光學讀寫頭實現雙波長顯微干涉術”, 國立中興大學機械工程學系碩士班論文, 2006 [38]張國平, 張銘峰, “光電工程導論”, 新科技書局, 1993 [39]徐統, “繞射物理學”, 徐氏基金會, 民國76年 [40]E. Hecht, “Optics”, Fourth Edition, Pearson Education, 2002 [41]H. F. Shih, “Integrated Optical Unit Design for the Collinear Holographic Storage System”, IEEE Transactions on Magnetics, vol.43, no.2, 2007
摘要: 
本研究結合繞射光學元件(diffractive optical element,DOE)與同軸式全像儲存系統(collinear holographic storage system)技術,實現積體化同軸式全像儲存系統之目的。實驗架構參考Optware公司所提出之同軸式全像儲存系統技術與一般商用光學讀寫頭之架構作整合,系統中加入繞射光學元件,利用繞射光學元件之偏折特性來改善同軸式全像儲存系統之龐大系統架構,重新架構出一套體積小、高儲存容量之積體化同軸式全像儲存系統架構。
本實驗使用空間光調變器(spatial light modulator,SLM)產生資料區與參考區,利用聚焦透鏡使近軸資料區與遠軸參考區在聚焦處產生干涉,再利用光折變晶體儲存形成相位光柵。還原資料時,入射參考光至光折變晶體之相位光柵產生繞射而重建出資料光。最後在讀取資料光之光路上加入繞射光學元件,使資料光入射繞射光學元件後產生繞射偏折,利用影像偵測器擷取重建之資料訊號。藉由繞射光學元件之使用,使同軸式全像儲存系統之體積縮小,達到積體化之目標。

In this study, we combine the diffractive optical element(DOE) with the collinear holographic storage system to realize the integrated collinear holographic storage system. We combine the system of the optical pickup head with the collinear holographic storage system that was proposed by the Optware Corporation. We adopt a diffractive optical element that can split light in this system to simplify the huge configuration of the collinear holographic storage system. As a result, we can get an integrated collinear holographic storage system with small form factor and high storage capacity.
In this system, a transmissive spatial light modulator(SLM) with central data part and outer-ring reference part is adopted for modulating the laser beam. When the laser beam focuses on the photorefractive crystal, central data part and outer-ring reference part will interfere to form the phase grating. When the reference beam is incident on the phase grating, the system will diffract out the reference beam and reconstruct the central data part. We adopt a diffractive optical element on the reading path for splitting the reconstructed beam. In this study, we realize the integrated collinear holographic storage system with small form factor and high storage capacity by utilizing the characteristics of the diffractive optical element.
URI: http://hdl.handle.net/11455/1941
其他識別: U0005-2808200715424100
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.