Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/19432
標題: 一個爲格網資源拓撲網目化之搜尋方法
Heuristic Search Methods on Meshlization of the Grid Resource Topology
作者: 陳緯榮
Chen, Wei-Rong
關鍵字: grid computing;格網運算;mesh partition;A* search method;grid resource model;網目分割;A*搜尋法;格網資源拓撲
出版社: 資訊科學系所
引用: 1.I. Foster , C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, 1st ed. San Francisco, CA, USA: Morgan-Kaufman, July 1998. 2.K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high-performance scientific simulations, In J. Dongarra et al., editors, Sourcebook of Parallel Computing, chapter 18. Morgan-Kaufmann, 2003. 3.A. Pothen, H. D. Simon, and K. -P. Liou, “Partitioning sparse matrices with eigenvectors of graphs,” SIAM J. Matrix Anal., vol. 11, issue 3, pp. 430-452, July 1990. 4.A. Pothen, H. D. Simon, L. Wang, and S. T. Bernard, “Towards a fast implementation of spectral nested dissection,” in Proc. ACM/IEEE Conf. on Supercomputing, Washington, DC, pp. 42-51, 1992. 5.B. Hendrickson, R. Leland, “An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations,” Tech. rep. SAND92-1460, Sandia National Laboratories, Albuquerque, NM, September 1992. 6.S. T. Barnard, H. D. Simon, “A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems,” in Proc. 6th SIAM Conf. on Parallel Processing for Scientific Computing, pp. 711-718, 1993. 7.M. T. Heath, P. Raghavan, “A Cartesian parallel nested dissection algorithm,” SIAM J. Matrix Anal. Appl., vol. 16, pp. 235-253, 1995. 8.P. Raghavan, “Line and Plane Separators,” Tech. rep. UIUCDCS-R-93-1794, Department of Computer Science, University of Illinois, Urbana, IL 61801, February 1993. 9.G. L. Miller, S.-H. Teng, and S. A. Vavasis, “A uni_ed geometric approach to graph separators,” in Proc. 31st Annual Symposium on Foundations of Computer Science, pp. 538-547, 1991. 10.G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh partitioning, in Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. R. Gilbert, and J. W.-H. Liu, eds. (an IMA workshop volume), Springer-Verlag, New York, 1993. 11.B. Nour-Omid, A. Raefsky, and G. Lyzenga, Solving finite element equations on concurrent computers, in Amer. Soc. Mech. Engrg., A. K. Noor, ed., pp. 291-307, 1986. 12.T. Bui, C. Jones, “A heuristic for reducing fill in sparse matrix factorization,” in Proc. Of the 6th SIAM Conf. Parallel Processing for Scientific Computing, pp. 445-452, 1993. 13.C.-K. Cheng, Y.-C. A. Wei, “An improved two-way partitioning algorithm with stable performance,” IEEE Trans. Computer Aided Design, vol. 10, no. 12, pp. 1502-1511, December 1991. 14.L. Hagen, A. Kahng, “Fast spectral methods for ratio cut partitioning and clustering, “ in Proc. IEEE Conf. on Computer Aided Design, pp. 10-13, November 1991. 15.L. Hagen, A. Kahng, “A new approach to effective circuit clustering,” in Proc. IEEE Conf. on Computer Aided Design, pp. 422-427, 1992. 16.B. Hendrickson, R. Leland, “A Multilevel Algorithm for Partitioning Graphs,” Tech. report SAND93-1301, Sandia National Laboratories, Albuquerque, NM, October 1993. 17.J. Garbers, H. J. Promel, and A. Steger, “Finding clusters in VLSI circuits,” in Proc. IEEE Conf. on Computer Aided Design, pp. 520-523, 1990. 18.R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox, “Graph contraction and physical optimization methods: A quality-cost tradeoff for mapping data on parallel computers,” ACM Conf. on Supercomputing, New York, 1993. 19.J. Chen, V. E. Taylor, “Mesh partitioning for efficient use of distributed systems,” IEEE Trans. on Parallel and Distributed Systems, vol. 13, no. 1, pp. 67-79, January 2002. 20.C. Walshaw, M. Cross, “Multilevel Mesh Partitioning for Heterogeneous Communication Networks,” Future Generation Computing System, vol. 17, no. 5, pp. 601-623, March 2001. 21.F. Pellegrini, J. Roman, “SCOTCH: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs,” In H. Liddell, A. Colbrook, B. Hertzberge, and P. Sloot, editors, High-Performance Computing and Networking (HPCN'96 Europe), vol. 1067 of Lecture Notes in Computer Science, pp. 493-498, Springer-Verlag, New York, 1996. 22.S. K. Das, D. J. Harvey, and R. Biswas, “MinEX: a latency tolerant dynamic partitioner for grid computing applications,” Future Generation Computer Systems, vol. 18, no. 4, pp. 477-489, March 2002. 23.S. Huang, E. Aubanel, and V. Bhavsar, Mesh partitioners for computational grids: a comparison, In V. Kumar, M. Gavrilova, C. Tan, and P. L'Ecuyer, editors, Computational Science and Its Applications, vol. 2269 of Lecture Notes in Computer Science, pp. 60-68. Springer Verlag, Berlin, 2003. 24.R. Wanschoor, E. Aubanel, “Partitioning and mapping of mesh-based applications onto computational grids,” in Proc. of Fifth IEEE/ACM International Workshop on Grid Computing, pp. 156-162, November 2004. 25.Globus Alliance, http://www.globus.org 26.Sun Grid Solution-Sun N1 Grid Engine6, http://www.sun.com/software/gridware 27.National Science Foundation Middleware Initiative (NMI), http://www.nsf-middleware.org 28.Grid Computing and Distributed Systems (GRIDS) Laboratory-Gridbus Middleware, http://www.gridbus.org 29.U. R. Chen, C. H. Wang, and W. Lin, “Aggregative resource topology generator on internet-scale computational grids,” J. of information technology and applications, vol. 1, no. 4, pp. 239-248, March 2007. 30.U. R. Chen, C. H. Wang, and W. Lin, “Average schedule length and resource selection policies on computational grid,” Lecture Notes in Computer Science, vol. 3947, pp. 63-72, May 2006. 31.R. C. Teixeira, O. C. M. B. Duarte, “Evaluating the impact of the communication system on distributed virtual environments,” Multimedia Tools and Applications, vol. 19, no. 3, pp. 259-278, March 2003. 32.B. M. Waxman, “Routing of multipoint connections,” IEEE J. on Selected Areas in Communications, vol. 6, no. 9, pp. 1617-1622, December 1988. 33.GT-ITM Project-Modeling Topology of Large Internetworks, http://www.cc.gatech.edu/projects/gtitm/ 34.The Cooperative Association for Internet Data Analysis (CAIDA), http://www.caida.org 35.A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach to universal topology generation,” in Proc. of the International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, no. 2001-003, August 2001. 36.B. Leonard, J. Cytowski, Search methods for artificial intelligence, Academic Press, New York, 1992. 37.J. Pearl, Intelligent Search Strategies for Computer Problem Solving, Department of Computer Science University of California Los Angeles, California, 1984.
摘要: 
在平行處理的研究中,工作排程以及資源選擇是很重要的議題。透過工作排程我們可以清楚瞭解各個子工作之間執行的順序性以及執行的時效性,目的就是為了將工作的總體執行時間壓縮到最短。而在資源選擇的議題上,有些工作可能需要大量的計算,有些工作可能需要大量的通訊,針對不同的工作性質所選擇的資源將有所不同。在格網運算的環境上,一件平行工作透過工作排程以及資源選擇所選出來資源將會以不規則拓撲的型態分佈在網路上。另外在平行處理的應用方面,有很多的規則型態的連接網路常被用來執行平行程式以便於加速平行處理的速度。
這篇論文主要的研究目標在於提出一個方法將一個在格網運算環境中經過工作排程以及資源選擇所得到的不規則的格網資源拓撲對應到一般平行處理所使用的規則的通訊網路拓撲上。我們採用啟發式搜尋法的方式來實作,並從得到的規則拓撲上瞭解該規則拓撲所呈現出的計算能力以及通訊能力,以便比較策略之間的差異性。

經過實驗的結果我們得到以下結論,隨著計算節點的增加使得格網的整體計算能力與通訊能力都會增加。排列策略的影響主要是在前期的區塊在Mesh上的排列組合方式。而依附策略對整體Mesh的影響計算能力與通訊能力的影響則是比較大的。計算能力優先的依附策略能夠使平均最小計算能力與平均計算能力之間的差距較小,通訊能力優先的依附策略能夠使平均最小通訊能力與平均通訊能力之間的差距較小。

In parallel processing research, job scheduling and resource selection are two important issues. Through scheduling can find execution order and execution time for every sub-task in an effort to shorten the total execution time. In the resource selection issue, some tasks maybe need a great deal of computation, others may require a large amount of communication. Resource selection is influenced by the requirements of task quality, and different requirements may result in varying resource selection. In the grid computational environment, resources selected by job scheduling and resource selection of a task are placed on irregular topology. On the implement of parallel processing, many regular connection networks are used to speed up parallel program execution.
This thesis proposes a mapping method that embeds irregular grid resource topology produced by job scheduling and resource selection to a regular connection network topologies. We use a heuristic search method to find and implement the computational ability and communication ability on regular connection network topologies. With the proposed method, we are allowed to observe the performance differences among various selection policies.
Based on the of the experiment result, we have found that the increase in computational nodes helps enhance the computation and communication capability of the grid computing. The permutations of the blocks on the mesh are mainly influenced by the permutation policy. The computational-ability-first attach policy can make the minimum computational ability close to average computational ability, and the communication-ability-first attach policy can make the minimum communication ability close to average communication ability.
URI: http://hdl.handle.net/11455/19432
其他識別: U0005-1207200713255400
Appears in Collections:資訊科學與工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.