Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/19575
DC FieldValueLanguage
dc.contributor婁德權zh_TW
dc.contributorDer-Chyuan Louen_US
dc.contributor王鄭慈zh_TW
dc.contributor吳憲珠zh_TW
dc.contributor詹永寬zh_TW
dc.contributorCheng-Tzu Wangen_US
dc.contributorHsien-Chu Wuen_US
dc.contributorYung-Kuan Chanen_US
dc.contributor.advisor朱延平zh_TW
dc.contributor.advisorYen-Ping Chuen_US
dc.contributor.author何玉安zh_TW
dc.contributor.authorHo, Yu-Anen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:07:05Z-
dc.date.available2014-06-06T07:07:05Z-
dc.identifierU0005-2912200801230600zh_TW
dc.identifier.citation[1] M. Nelson and J. L. Gailly, “The Data Compression Book,” 2nd Edition, M&T Books, New York, 1996. [2] B. J. Falkowski and L. S. Lim, “Gray Scale Image Compression Based on Multiple-Valued Input Binary Functions, Walsh and Reed-Muller Spectra,” Proceedings the 30th International Symposium on Multiple-Valued Logic, Portland, Oregon, May 2000, pp. 279-284. [3] B. J. Falkowski, “Lossless Compression of Binary Images Using Logic Methods,” Proceedings of the South Eastern Europe Workshop on Computational Intelligence and Information Technologies, Nis, Yugoslavia, June 2001, pp. 111-116. [4] S. H. Low, N. F. Maxemchuk, J. T. Brassil, L. O'Gorman, “Document Marking and Identification Using Both Line and Word Shifting,” In Proceedings of Infocom, Boston, MA, 1995, pp. 853-860. [5] A. K. Chaudhary, J. Augustine and J. Jacob, “Lossless Compression of Image Using Logic Minimization,” Proceedings of IEEE International Conference on Image Processing, Vol. 1, Lausanne, Switzerland, 1996, pp. 77-80. [6] P. Mateu-Villarroya and J. Prades-Nebot, “Lossless Image Compression Using Ordered Binary-Decision Diagrams,” Electronics Letters, Vol. 37, No. 3, February 2001, pp.162-163. [7] G. R. Robertson, M. F. Aburdene and R. J. Kozick, “Differential Block Coding of Bi-Level Images,” IEEE Transactions on Image Processing, Vol. 5, No. 9, September 1996, pp. 1368-1370. [8] B. J. Falkowski, “Lossless Binary Image Compression Using Logic Functions and Spectra,” Computers and Electrical Engineering, Vol. 30, No. 1, January 2004, pp. 17-43. [9] S. Hanan, “Data Structures for Quadtree Approximation and Compression,” Communications of the ACM, Vol. 28, No. 9, September 1985, pp. 973-993. [10] T. W. Lin, “Compressed Quadtree Representations for Storing Similar Images,” Image and Vision Computing, Vol. 15, No. 11, November 1997, pp. 833-843. [11] C. L. Wang, S. C. Wu, Y. K. Chan, R. F. Chang, “Quadtree and Statistical Model-Based Lossless Binary Image Compression Method,” Imaging Science Journal, Vol. 53, No. 2, June 2005, pp. 95-103. [12] J. Wang and L. Ji, “A Region and Data Hiding Based Error Concealment Scheme for Images,” IEEE Transformations on Consumer Electronics, Vol. 47, No. 2, May 2001, pp.257-262. [13] C. C. Thien and J. C. Lin, “A Simple and High-Hiding Capacity Method for Hiding Digit-by-Digit Data in Images Based on Modulus Function,” Pattern Recognition, Vol. 36, No. 12, December 2003, pp. 2875-2881. [14] C. K. Chan and L. M. Cheng, “Hiding Data in Images by Simple LSB Substitution,” Pattern Recognition, Vol. 37, No. 3, March 2004, pp. 469-474. [15] S. L. Li, K. C. Leung, L. M. Cheng, C. K. Chan, “A Novel Image-Hiding Scheme Based on Block Difference,” Pattern Recognition, Vol. 39, No. 6, June 2006, pp. 1168-1176. [16] C. C. Chang, T. S. Chen and L. Z. Chung, “A Steganographic Method Based upon JPEG and Quantization Table Modification,” Information Sciences, Vol. 141, No. 1, 2002, pp. 123-138. [17] N. F. Johnson and S. Jajodia, “Steganography: Seeing the Unseen,” IEEE Computer, February 1998, pp. 26-34. [18] K. Matsui and K. Tanaka, “Video-Steganography: How to Secretly Embed a Signature in a Picture,” Proceedings of IMA Intellectual Property Project, Vol. 1, No. 1, 1994, pp. 187-206. [19] J. Brassil, S. Low, N. Maxemchuk and L. O'Gorman, “Electronic Marking and Identification Techniques to Discourage Document Copying,” IEEE Journal on Selected Areas in Communications, Vol. 13, No. 8, 1995, pp. 1495-1504. [20] N. F. Maxemchuk and S. Low, “Marking Text Documents,” Proceedings of the 1997 International Conference on Image Processing (ICIP ''97), 3-Volume Set-Volume 3, October 1997, pp. 13. [21] M. Wu and B. Liu, “Data Hiding in Binary Image for Authentication and Annotation,” IEEE Transactions on Multimedia, Vol. 6, No. 4, August 2004, pp.528-538. [22] W. Zeng, “Digital watermarking and data hiding: technologies and applications,” in Proc. Int. Conf. Inf. Syst., Anal. Synth., Vol. 3, 1998, pp 223-229. [23] C. C. Thien and J. C. Lin, “A Simple and High-Hiding Capacity Method for Hiding Digit-by-Digit data in images based on Modulus function,” Pattern Recognition, Vol. 36, No. 13, 2003, pp. 2875-2881. [24] C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB substitution,” Pattern Recognition, Vol. 37, No. 3, 2004, pp. 469-474. [25] J. Wang and L. Ji, “A Region and Data Hiding Based Error Concealment Scheme for Images,” IEEE Transformations on Consumer Electronics, Vol. 47, No. 2, 2001, pp.257-262. [26] R. Z. Wang, C. F. Lin and J. C. Lin, “Image Hiding by Optimal LSB substitution and genetic algorithm,” Pattern Recognition, Vol. 34, No. 3, 2001, pp. 671-683. [27] S. L. Li, K. C. Leung, L. M. Cheng, C. K. Chan, “A novel image-hiding scheme based on block difference,” Pattern Recognition, Vol. 39, No. 6, 2006, pp. 1168-1176. [28] Y. K. Lee and L. H. Chen, “An Adaptive Image Steganographic Model Based on Minimum-error LSB Replacement,” Proceedings of the Ninth National Conference on Information Security, Taichung, Taiwan, Vol. 14-15, May 1999, pp. 8-15. [29] K. Matsui and K. Tanaka, “Video-steganography: how to secretly embed a signature in a picture,” Proc. IMA Intellectual Property Project, Vol. 1, No. 1, 1994. [30] N. F. Maxemchuk and S. Low, “Marking text documents,” in Proc. IEEE. ICIP'97, 1997. [31] S. H. Low, N. F. Maxemchuk, J. T. Brassil, L. O'Gorman, “Document marking an identification using both line and word shifting,” in: Proceedings of Infocom, Boston, MA, 1995, pp. 853-860. [32] M. Wu and B. Liu, “Data hiding in binary image for authentication and annotation,” IEEE Transactions on Multimedia, Vol. 6, No. 4, August 2004, pp.528-538. [33] C. W. Honsinger, P. Jones, M. Rabbani, J. C. Stoffel, “Lossless Recovery of an Original Image Containing Embedded Data,” U.S. Patent. 6 278 791 B1, August 21, 2001. [34] J. Fridrich, M. Goljan and R. Du, “Invertible authentication,” in Proc. SPIE Security Watermarking Multimedia Contents, San Jose, CA, January 2001, pp. 197-208. [35] B. Macq and F. Deweyand, “Trusted headers for medical images,” presented at the DFG VIII-D II Watermarking Workshop, Erlangen, Germany, October 1999. [36] Z. Ni, Y. Q. Shi, N. Ansari, W. Su, “Reversible Data hiding ,” IEEE Transactions on Circuits and System for Video Technology, Vol. 16 No. 3, March 2006, pp. 354-362. [37] C. L. Tsai, H. F. Chiang, K. C. Fan, C. D. Chung, “Reversible data hiding and lossless reconstruction of binary images using pair-wise logical computation mechanism,” Pattern Recognition, Vol. 38, No. 11, 2005, pp. 1993-2006. [38] R. Ulichney, “Digital halftoning,” Cambridge, MA: MIT Press, 1987. [39] E. Bayer, “An optimum method for two level rendition of continuous tone pictures,” In IEEE International Conference on Communications, Conference Record, Seattle, Washington, USA, June 11-13 1973, pp. 11-15. [40] J. F. Jarvis, C. N. Judice and W. H. Ninke, “A survey of techniques for the display of continuous-tone pictures on bilevel displays,” Computer Graphics and Image Processing, Vol. 5, 1976, pp. 13-40. [41] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray scale,” Proceedings of the Society for Information Display, 1975, pp. 36-37. [42] D. E. Knuth, “Digital halftones by dot diffusion,” ACM Transactions on Graphics, Vol. 6, No. 4, October 1987, pp. 245-273. [43] M. Mese and P. P. Vaidyanathan, “Optimized halftoning using dot diffusion and methods for inverse halftoning,” IEEE Transactions on Image Processing, Vol. 9, No. 4, April 2000, pp. 691-709. [44] I. Katsavounidis and C. C. J. Kuo, “A multiscale error diffusion technique for digital halftoning,” IEEE Transactions on Image Processing, Vol. 6, No. 3, March 1997, pp. 483-490. [45] Y. H. Chan, “A modified multiscale error diffusion technique for digital halftoning,” IEEE Signal Processing Letters, Vol. 5, No. 11, November 1998, pp. 277-280. [46] Y. H. Chan and S. M. Cheung, “Feature-preserving multiscale error diffusion for digital halftoning,” Journal of Electronic Imaging, Vol. 13. No. 3, 2004, pp. 639-645. [47] M. S. Fu and O. C. Au, “Data hiding for halftone images,” In Proceedings of SPIE Conference on Security and Watermarking of Multimedia Contents II, January 2000. [48] M. S. Fu and O. C. Au, “Data hiding by smart pair toggling for halftone images,” In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, June 2000. [49] M. S. Fu and O. C. Au, “Halftone image data hiding with intensity selection and connection selection,” Signal Processing: Image Communication, Vol. 16, No 10, August 2001, pp. 909-930. [50] M. S. Fu and O. C. Au, “Data hiding watermarking for halftone images,” IEEE Transactions on Image Processing, Vol. 11, No. 4, April 2002, pp. 477-484. [51] S. C. Pei and J. M. Guo, “Hybrid pixel-based data hiding and block-based watermarking for error-diffused halftone images,” IEEE Transaction on Circuits and Systems for Video Technology, Vol. 13, No. 8, August 2003, pp. 867-884. [52] S. C. Pei and J. M. Guo, “Data hiding in halftone images with noise-balanced error diffusion,” IEEE Signal Processing Letters, Vol. 10, No. 12, December 2003, pp. 349-351. [53] S. C. Pei, J. M. Guo and H. Lee, “Novel robust watermarking technique in dithering halftone images,” IEEE Signal Processing Letters, Vol. 12, No. 4, April 2005, pp. 333-336. [54] P. Stucki, “MECCA-A Multiple-Error Correcting Computation Algorithm for Bilevel Image Hardcopy Reproduction,” Research Report RZ1060, IBM Research Laboratory, Zurich, Switzerhand, 1981. [55] S. C. Pei and J. M. Guo, “High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square filter,” IEEE Transactions on image processing, Vol. 15. No. 6, June 2006, pp.1665-1679. [56] Y. K. Chan and C. C. Chang, “An Efficient Data Structure for Storing Similar Binary Images,” In Information Organization and Databases: Foundation of Data Organization (Eds K. Tanaka and S. Ghandeharizadeh), 2001, pp. 91-104 (Kluwer Aeademic, Massachusetts). [57] J. Bierbrauer and J. Fridrich, “Constructing good covering codes for applications in steganography,” available: http://www.ws.binghamton.edu/fridrich/ (2008). [58] W. Zhang, S. Wang and X. Zhang, “Improving embedding efficiency of covering codes for applications in steganography,” IEEE communication letters, Vol. 11, No. 8, August 2007, pp. 680-682. [59] T. Batu, S. Dasgupta, R. Kumar, R. Rubinfeld, “The complexity of approximating entropy,” In: Proceedings 17th Annual IEEE Conference on Computational Complexity, Montreal, Canada, May 2002, pp. 678-687. [60] G. Pandurangan and E. Upfal, “Can entropy characterize performance of online algorithms,” In: Proceeding 20th Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, January 2001, pp. 727-734. [61] C. E. Shannon. “A mathematical theory of communication,” The Bell System Technical Journal, Vol. 27, 1948, pp. 379-423. [62] CCITT Standard Fax Images at ftp://nic.funet.fi/pub/graphics/misc/test-images/. [63] M. Davio, J. P. Deschamps, and A. Thayse, “Discrete and Switching Functions,” McGraw-Hill, New York, 1978. [64] D. H. Green, “Modern Logic Design,” Wokingham, MA: Addison-Wesley, 1986. [65] B. J. Falkowski and C. H. Chang, “Hadamard-Walsh Spectral Characterization of Reed-Muller Expansions,” Computers and Electrical Engineering, Vol. 25, No. 2, March 1999, pp.111-134.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/19575-
dc.description.abstract資訊隱藏是將機密資料隱藏至掩護影像,而這張嵌入有機密資料的影像稱為偽裝影像。可復原的資訊隱藏技術則是企圖從偽裝影像中取出機密資料後,還能完整的重建掩護影像。因此,在資訊隱藏技術中,當我們在取出機密資料後還需要原始的掩護影像就可以採用可復原的資訊隱藏技術。在本論文中,針對二元影像提出植基於樣本取代法(pattern substitution)的高容量可復原資訊隱藏技術。主要的想法是統計出樣本的發生頻率,會發現有些樣本出現的機率很高,有些卻很低。因此,只要能夠找出樣本和樣本之間的交換關係,造成掩護影像的影響越少越好。利用這特性,就可以將其中一個出現較低頻率的樣本,記錄下來,並嵌入於掩護影像或是以安全的通道來傳遞。在取回機密資訊的階段,就可以將這些樣本還原回原始的樣本,達到無失真重建掩護影像的效果。 二元影像是一種常用的影像格式,例如:傳真和文件影像。本論文提出一個二元影像壓縮方法,稱QLS壓縮方法,使用BFT 線性四方樹和邏輯函數的技術去無失真地壓縮一個二元影像。這個方法利用一個廣度優先線性搜尋四方樹切割影像為區塊狀,並且使用邏輯函數的技術對區塊編碼。本論文也描述一個QLS 壓縮隱藏的方法對掩護影像編碼,並且嵌入機密資料於掩護影像編碼的過程中。這個由QLS建立的偽裝影像是相當相似於掩護影像。 半色調影像通常是使用在低記憶體設備中,例如:印表機、傳真機和手機等。在本論文中,針對半色調影像提出一個新的可逆式資訊隱藏技術。這個新方法在灰階影像透過誤差擴散轉換成為半色調影像後,根據區塊中的像素排列做分類並且找出兩個樣本來隱藏機密資料。這個新方法不但可以安全的傳遞機密訊息,也可以在取回機密訊息後完整的還原原始的半色調影像。zh_TW
dc.description.abstractData hiding, as the term itself suggests, means the hiding of secret data in a cover image, and the result is a so-called stego-image. Reversible data hiding is a kind of data hiding technique where not only the secret data can be extracted from the stego-image but the cover image can be completely rebuilt after the extraction of the secret data. Therefore, reversible data hiding is the choice in cases of secret data hiding where the recovery of the cover image is required. In this dissertation, we propose a high-capacity reversible data hiding scheme based on pattern substitution (PS). It gathers statistical data about the occurrence frequencies of different patterns and quantifies how the frequency of occurrence differs from pattern to pattern. This way, on top of the pattern occurrence frequency information, some pattern exchange relationships can be established, and PS can thus be used to do the data hiding. Then, in the extraction stage, we can reverse these patterns to their original forms and rebuild an undistorted cover image. Binary image is one of the commonly used image formats, such as FAX and document images. This dissertation proposes a binary image compression method, called QLS compression method, which uses BFT linear quadtree and logic-spectra techniques to losslessly compress a binary image. This method employs a breadth first traversal linear quadtree to divide the image into blocks, and then uses logic functions and spectral techniques to encode the blocks. This dissertation also presents a QLS hiding-compression method to encode the cover image and embed the secret data in the cover image during the encoding of the cover image. The stego-image created by the QLS hiding-compression method is quite similar to the cover image. Halftone image is commonly used by low memory space devices such as printers, fax machines, cell phones, etc. In this dissertation, a novel reversible data hiding scheme for halftone images is represented. After rendering the multi-tone image into a halftone image by error diffusion, the proposed scheme classifies blocks according to pixel permutation in the halftone image and then generates two patterns to hide secret data. The new scheme not only can securely conceal secret information, but it also can fully recover the original halftone image after the extraction of the secret information.en_US
dc.description.tableofcontentsACKNOWLEDGEMENTS I ABSTRACT IN CHINESE II ABSTRACT IN ENGLISH IV TABLE OF CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES X 1 INTRODUCTION 1 1.1 OVERVIEW 1 1.2 RESEARCH OBJECTIVE 11 1.3 ORGANIZATION 14 2 RELATED WORKS 15 2.1 HALFTONE IMAGE 15 2.2 QUADTREE COMPRESSION 17 2.3 DATA HIDING 18 2.4 REVERSIBLE DATA HIDING 19 3 A BINARY IMAGE HIDING-COMPRESSION METHOD USING BFT LINEAR QUADTREE AND LOGIC-SPCTRA 22 3.1 THE DATA ENCODING PHASE 22 3.1.1 Pixel Differencing 22 3.1.2 Quadtree Compressing 25 3.1.3 Block Compressing Stage 32 3.2 DECODING PHASE 35 3.3 THE QLS HIDING-COMPRESSION METHOD 37 3.4 EXPERIMENTAL RESULTS 40 4 HIGH-CAPACITY REVERSIBLE DATA HIDING IN BINARY IMAGE USING PATTERN SUBSTITUTION 45 4.1 IMAGE DIFFERENCING 46 4.2 PATTERN SUBSTITUTION 47 4.2.1 Pattern substitution by pseudo random number generator (PS-K) 50 4.2.2 Pattern substitution by embedding secret header (PS-E) 51 4.3 DATA EXTRACTION AND RECOVERY 53 4.4 DATA HIDING CAPACITY 54 4.5 EXPERIMENTAL RESULTS 57 5 A NOVEL REVERSIBLE DATA HIDING FOR HALFTONE IMAGE BASED ON ERROR DIFFUSION 64 5.1 PIXEL COMBINATION MATCH IN EACH BLOCK 64 5.2 DATA HIDING PROCEDURE 66 5.3 SECRET DATA EXTRACTION AND ORIGINAL HALFTONE IMAGE RECOVERY 68 5.4 EXPERIMENTAL RESULTS 69 6 DATA HIDING SCHEME USING COVERING CODES IN HALFTONE IMAGES BASED ON ERROR DIFFUSION 77 6.1 COVERING CODES 77 6.2 PROPOSED METHOD 78 6.3 EXPERIMENTAL RESULTS 80 7 CONCLUSIONS AND FUTURE WORKS 86 7.1 CONCLUSIONS 86 7.2 FUTURE WORKS 88 REFERENCES 90en_US
dc.language.isoen_USzh_TW
dc.publisher資訊科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2912200801230600en_US
dc.subjectBinary imageen_US
dc.subject二元影像zh_TW
dc.subjectData hidingen_US
dc.subject資訊隱藏zh_TW
dc.title二元影像的資訊隱藏和影像壓縮之研究zh_TW
dc.titleA Study on Bi-Level Image Data Hiding and Image Compressionen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:資訊科學與工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.