Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1959
標題: 微加工機具的最佳化設計
Optimum Design of Micro-Machining Machine
作者: 張宗憲
Chang, Tzong-Shiann
關鍵字: optimun design;最佳化設計;topology optimun design;拓樸最佳化設計
出版社: 機械工程學系所
引用: 1.A. G. M. Michell, “The Limits of Economy of Material In Framed Structures,” Philosophical Magazine, Vol. 8, No. 47, 1904, pp. 589-597. 2.L. A. Schmit, “Structural Design by Systematic Synthesis,” Proceedings of the 2nd Conference on Electronic Computation, ASCE, New York, 1960, pp. 105-122. 3.O. C. Zienkiewicz and J. S. Campbell, “Shape Optimization and Sequential Linear Programming,” in R. H. Gallagher and O. C. Zienkiewicz (eds.), Optimum Structural Design, Wiley, New York, 1973 4.R. T. Haftka and R. V. Grandhi, “Structural Shape Optimization – A Survey,” Computer Methods in Applied Mechanics and Engineering, Vol. 57, Issue 1, 1986. 5.D. Wang, W.H. Zhang and J. S. Jiang, “Truss Shape Optimization with Multiple Displacement Constraints,” Computer Methods in Applied Mechanics and Engineering , Vol. 191, 2002, pp. 3597-3612. 6.G. Steven, “Topology and Shape Structural Optimization that Minimize Maximum Stress and Maximizes Stiffness,” Computational Mechanics for the Twenty-First Century, 2000, pp. 403-430. 7.Q. Li, “Evolutionary Shape Optimization for Stress Minimization,” Mech. Res. Commum, Vol. 26, 1999, pp. 657-664. 8.Nagarajan Thiyagarajan and Ramana V. Grandhi, “3D Preform Shape Optimization in Forging using Reduced Basis Techniques,” Engineering Optimization, Vol. 37, No. 8, 2005, pp. 797-811. 9.L. Holzleitner and K.G. Mahmoud, “Structural Shape Optimization Using MSC/NASTRAN and Sequential Quadratic Programming ,” Computers & Structures Vol. 70, 1999, pp. 487-514. 10.K. G. Mahmoud, H. W. Engl and L. Holzleitner, ”Optimum Structural Design using MSC/NASTRAN and Sequential Quadratic Programing,” Computer and Structures, Vol. 52, No. 3, 1994, pp. 437-447. 11.S. Kodiyalam, G.N. Vanderplaats, H. Micra, G.K. Nagendra and D.V. Wallerstein, “Structural Shape Optimization with MSC/NASTRAN”, Structural Dynamics and Materials Conf.,1990 pp. 150-160. 12.M.P. Bendsøe and N. Kikuchi, “Generating Optimal Topologies in Structural Design Using a Homogenization Method ”, Computer Methods in Applied Mechanics and Engineering, Vol. 71, 1988, pp. 197-224. 13.M.P. Bendsøe, “Optimal Shape Design as a Material Distribution Problem,” Structural Optimization, Vol. 1 , 1989, pp.193-202. 14.H. Mlejnek, “Some Aspects of the Genesis of structures”, Structural Optimization, Vol. 5, 1992, pp. 64-69. 15.B. P. Wang , C. M. Lu and R. J. Yang, “Topology Optimization Using MSC/NASTRAN”, MSC User Conference, Orlando S. L., 1994 16.陳至賢, “結構形式最佳化設計,” 國立中興大學機械工程研究所碩士論文, 民國84年6月 17.林嘉洋, “可變空間的形勢最佳化,” 國立中興大學機械工程研究所碩士論文, 民國87年6月 18.何志強, “工具機結構輕量化技術,” 機械工業雜誌, 252期, pp. 166-179. 19.鍾炳春, “ANSI反齒鏈片之最佳化設計,” 國立中興大學機械工程研究所碩士論文, 民國93年12月 20.R. J. Yang and C. H. Chang, “Optimal Topology Design Using Linear Programming,” Computers & Structures, Vol. 52, 1996, pp 265-275. 21.Seung-Hyun Ha and Seonho Cho, “Topological Shape Optimization of Heat Conduction Problems Using Level Set Approach,” Numerical Heat Transfer, Part B: Fundamentals, Vol. 48, No. 1, 2005, pp 67-88. 22.P. Martinez, P. Marti and O. M. Querin, “Growth Method For Size, Topology and Geometry Optimization of Truss Structures,” Structural and Mutidisciplinary Optimization, Vol. 33, No. 1, 2007, pp. 13-26. 23.羅錦龍, “品質計畫工程指引,” 中國生產力中心, 民國2001年3月 24.Chen Ting-Yu and Lin Chia-Tang, “Determination of optimum design spaces for topology optimization,” finite Elements in Analysis and Design, Vol 36, No. 1, 2000, pp.1-16 25.黎正中, “穩健設計之品質工程,” 台北圖書有限公司, 民國82年1月 26.GENESIS USER MANUAL VOLUME II VERSION 7.0 27.GENESIS 7.0 TO 7.5 MANUAL SUPPLEMENT VERSION 7.5 28.劉克琪, “實驗設計與田口式品質工程,” 華泰書局, 民國83年7月 29.魏維俊, “精密車床主軸頭之最佳化設計,” 國立中興大學機械工程研究所碩士論文, 民國86年6月 30.王政斌, “立式綜合加工機結構最佳化設計,” 國立中興大學機械工程研究所碩士論文, 民國87年6月 31.SKF,"precision bearing"1991,p. 19. 32.M. T. Zaman, A. Senthil Kumar, M. Rahman and S. Sreeram, “A Three-dimensional Analytical Cutting Force Model For Micro End Milling Operation,” International Journal of Machine Tools and Manufacture, Vol. 46, No. 3-4, 2006, pp. 353-366. 33.Yahya Dogu, Ersaan Aslan and Necip Camuscu, “A Numerical Model to Determine Temperature Distribution in Orthogonal Metal Cutting,” Journal of Materials Processing Technology, Vol. 171, No. 1, Jan 10, 2006, pp. 1-9. 34.MSC/NASTRAN DESIGN SENSITIVITY AND OPTIMIZATION USE’S GUIDE V67 35.J. Chae and S. S. Park, “High Frequency Bandwidth Measurements of Micro Cutting Forces,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 9, 2007, pp. 1433-1441. 36.Chengfeng Li, Xinmin Lai, Hongtao Li and Jun Ni, “Modeling of Three-dimensional Cutting Forces in Micro-end-milling,” Journal of Micromechanics and Microengineering, Vol. 17, No. 4, 2007, pp. 671-678. 37.I. S. Kong, J. S. Kim, and J.H. Kim, “A Mechanistic Model of Cutting Force in the Micro End Milling Process,” Journal of Material Processing Technology, Vol. 187-188, 2007, pp. 250-255. 38.Sinan Filiz, Caroline M. Conley, Matthew, B. Wasserman and O. Burak Ozdoganlar, “An Experimental Investigation of Micro-machinability of Copper 101 Using Tungsten Carbide Micro-endmills,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 7-8, 2007, pp. 1088-1100. 39.Zinan Lu and Takeshi Yoneyama, “Micro Cutting in the Micro Lathe Turning System,” International Journal of Machine Tools and Manufacture, Vol. 39, No. 7, 1999, pp. 1171-1183. 40.THE NEWPORT RESOURCE 2006/2007.
摘要: 
本文主要探討使用最佳化方法設計出一微型加工機具無論於靜態或動態受力以及溫度效應下,微型加工機具之切削刀具和切削工件之間的相對位移量最小,且符合相關的限制條件之下,達到最佳化的目標。而本文使用田口法訂定各種因素及水準並且選定合適的直交表,由直交表產生各種不同排列組合的邊界,讓微加工機具在一可變的設計邊界內進行拓樸最佳化分析,使得結構隨著彈性的設計空間而有不同拓樸形勢出現,以便於決定微型加工機具的最佳邊界。
在拓樸最佳化後得到一最佳的初始拓樸形狀,以此初始拓樸形狀為基礎重新建立一個輪廓較為平整規則的有限元素結構,再利用MSC/NASTRAN有限元素分析軟體產生多組的形狀基礎向量,以形狀基礎向量作為形狀最佳化之設計變數,以便進行形狀最佳化設計。由於為了提升加工精度以及阻絕地面振動,微型加工機具將被放置在一自行設計的隔震平台上,藉由調整隔震平台的相關參數即為尺寸最佳化設計的對象,選擇隔震平台的彈簧係數、阻尼係數、隔震平台上下兩塊不銹鋼板厚度…等作為尺寸最佳化的設計變數,經由MSC/NASTRAN有限元素軟體中最佳化模組同時進行整機形狀和尺寸最佳化設計,經過靜態以及動態分析如整機靜態分析、整機暫態響應分析和整機頻率響應分析,最後完成最佳化微型加工機具之設計。

This thesis uses optimization methods to design a micro-machining machine subjected to static, dynamic and thermal loadings. The objective is to minimize the relative displacement between the tool tip and the workpiece. The Taguchi method is used to determine the optimum design space to generate the topology of the structure. Based on the orthogonal table various designe spaces are formed and the topologies are generated within these design spaces. The best one is chosen as the topology of the machine.
After obtaining the topology, a new smooth finite element model is built based on the topology obtained. This model is used for shape optimization with same shape basis vectors generated by forced displacement on same boundaries of the model. To reduce the vibration form the ground, a vibration isolator is also designed to support the micro-machining machine. The sizing optimization is used to design the isolator. The design variables include the spring constant, the damping coefficient, the thickness of the supporting plates, etc. The shape and sizing optimization of the whole system is executed by using MSC/NASTRAN. Under different constraints, the optimally designed micro-machining machines are obtained.
URI: http://hdl.handle.net/11455/1959
其他識別: U0005-3101200813020900
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.