Please use this identifier to cite or link to this item:
標題: 植基於組合理論之秘密訊息認證與易碎型浮水印影像認證演算法之研究
A Study of Fragile Watermarking for Image and Secret Message Authentication Based on the Combinatorial Theory
作者: 張哲嘉
Zhang, Zhe-Jia
關鍵字: 秘密訊息認證;combinatorial theory;偵測正確率;易碎型浮水印;影像認證;竄改偵測率;資訊隱藏;偽裝學;secret message authentication;correct-detection rate;fragile watermarking;image authentication;tamper detection rate;data hiding;steganography
出版社: 資訊網路多媒體研究所
引用: [Arno2003] M. Arnold, S. D. Wolthusen, and M. Schmucker, Techniques and Applications of Digital Watermarking and Content Protection. Norwood, MA: Artech House Publishers, 2003. [Bai1998] N.Y. Bai and J.Y. Chiang, “Data Hiding Using Binocular Fusion of Stereo Pairs,” Proceeding of the Eighth National Conference in Information Security, pp. 245-254, May, 1998. [Barn2001] M. Barni, F. Bartolini, and A. Piva, “Improved Wavelet-Based Watermarking Through Pixel-Wise Masking,” IEEE Transactions on Image Processing, Vol. 10, pp. 783-791, 2001. [Bend1996] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for Data Hiding,” IBM System Journal, Vol. 35, pp. 313-336, 1996. [Chan2002] C. C. Chang, T. S. Chen, and L. Z. Chung, “A Steganographic Method Based upon JPEG and Quantization Table Modification,” Information Sciences - Informatics and Computer Science: An International Journal, Vol. 141, pp. 123-138, 2002. [Chan2004] C. K. Chan and L. M. Cheng, “Hiding Data in Images by Simple LSB Substitution,” Pattern Recognition, Vol. 37, pp. 469-474, Mar. 2004. [Chan2006] C. C. Chang, Y. S. Hu, and T. C. Lu, “A Watermarking-Based Image Ownership and Tampering Authentication Scheme,” Pattern Recognition Letters, Vol. 27, pp. 439-446, 2006. [Chen2007] Y. M. Cheng and C. M. Wang, “An Adaptive Steganographic Algorithm for 3D Polygonal Meshes,” The Visual Computer: International Journal of Computer Graphics, Vol. 23, pp. 721-732, 2007. [Chen2009a] W. C. Chen, and M. S. Wang, “A Fuzzy C-means Clustering-Based Fragile Watermarking Scheme for Image Authentication,” Expert Systems with Applications, Vol. 36, Issue 2, Part 1, pp. 1300-1307, 2009. [Chen2009b] Y. M. Cheng and C. M. Wang, “An Adaptive High Dynamic Range Images Steganographic Approach with Authentication,” IEEE Multimedia (Accepted), 2009. [Cox1997] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure Spread Spectrum Watermarking for Multimedia,” IEEE Transactions on Image Processing, Vol. 6, pp. 1673-1687, 1997. [Cox2002] I. Cox, M. Miller, and J. Bloom, Digital Watermarking. San Francisco, CA: Morgan Kauffman Publishers, 2002. [Holl2000] M. Holliman and N. Memon, “Counterfeiting Attacks on Oblivious Block-Wise Independent Invisible Watermarking Schemes,” IEEE Transactions on Image Processing, Vol. 9, No. 3, pp. 432-441, 2000. [Hsu1999] C.-T. Hsu and J.-L. Wu, “Hidden Digital Watermarks in Images,” IEEE Transactions on Image Processing, Vol. 8, pp. 58-68, 1999. [Huan2008] C. H. Huang, C. C. Lee, H. C. Wu, and C. M. Wang, “Lossless Data Hiding for Color Images,” Proceedings of Eighth International Conference on Intelligent Systems Design and Applications, Vol. 3, pp. 632-637, 2008. [John2001] N. F. Johnson, Z. Duric, and S. Jajodia, Information Hiding: Steganography and Watermarking - Attacks and Countermeasures, Kluwer Academic Publisher, London, 2001. [Katz2000] S. Katzenbeisser and F. A. P. Petitcolas, Information Hiding Techniques for Steganography and Digital Watermarking, Artech House, London, 2000. [Kino1996] H. Kinoshita, “An Image Digital Signature System with ZKIP for the Graph Isomorphism,” Proceedings of the IEEE International Conference on Image Processing, Vol. 3, pp. 247-250, 1996. [Lang2001] G. C. Langelaar and R. L. Lagendijk, “Optimal Differential Energy Watermarking of DCT Encoded Images and Video,” IEEE Transactions on Image Processing, Vol. 10, pp. 148-158, 2001. [Li2000] X. Li and H. H. Yu, “Transparent and Robust Audio Data Hiding in Subband Domain,” Proceedings of International Conference on Information Technology: Coding and Computing, pp. 74-79, 2000. [Li2006] C. T. Li and Y. Yuan, “Digital Watermarking Scheme Exploiting Nondeterministic Dependence for Image Authentication,” Optical Engineering, Vol. 45, pp. 127001-6, 2006. [Lin1999] E. T. Lin and E. J. Delp, “A Review of Data Hiding in Digital Images,” Proceedings of Image Processing, Image Quality, Image Capture Systems, pp. 274-278, 1999. [Lin2001] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, Scale, and Translation Resilient Watermarking for Images,” IEEE Transactions on Image Processing, Vol. 10, pp. 767-782, 2001. [Lin2005] P. L. Lin, C.-K. Hsieh, and P.-W. Huang, “A Hierarchical Digital Watermarking Method for Image Tamper Detection and Recovery,” Pattern Recognition, Vol. 38, pp.2519-2529, 2005. [Liu2002] T. Liu and Z. D. Qiu, “The Survey of Digital Watermarking-based Image Authentication Techniques,” Proceedings of IEEE 6th International Conference Signal Processing, Vol. 2, pp. 1556-1559, August 2002. [Liu2007] T. Y. Liu and W. H. Tsai, “A New Steganographic Method for Data Hiding in Microsoft Word Documents by a Change Tracking Technique,” IEEE Transactions on Information Forensics and Security, Vol. 2, pp. 24-30, March 2007. [Niko1998] N. Nikolaidis and I. Pitas, “Robust Image Watermarking in the Spatial Domain,” Signal Processing, Vol. 66, Issue. 3, pp. 385-403, May, 1998. [Pfit1996] B. Pfitzmann, “Information Hiding Terminology - Results of an Informal Plenary Meeting and Additional Proposals,” Proceedings of the First International Workshop on Information Hiding, pp. 347-350, 1996. [Pita1996] I. Pitas, “A Method for Signature Casting on Digital Images,” Proceedings of the IEEE International Conference on Image Processing, Vol. 3, pp. 215-218, September, 1996. [Piti1999] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information Hiding-A Survey,” Proceedings of the IEEE: Special Issue on Identification and Protection of Multimedia Content, Vol. 87, pp. 1062-1078, July 1999. [Rey2002] C. Rey, and J. L. Dugelay, “A Survey of Watermarking Algorithms for Image Authentication,” EURASIP Journal on Applied Signal Processing, No. 6, pp. 613-621, 2002. [Ruan1998] J. J. K. O. Ruanaidh and T. Pun, “Rotation, Scale and Translation Invariant Spread Spectrum Digital Image Watermarking,” Signal Processing, Vol. 66, Issue. 3, pp. 303-317, May, 1998. [Seit2005] J. Seitz, Digital Watermarking for Digital Media. Hershey, PA: Information Science Publishers, 2005. [Spau2002] J. Spaulding, M. N. Shirazi, and E. Kawaguchi, “Application of Bit-Plane Decomposition Steganography to JPEG2000 Encoded Images,” IEEE Signal Processing Letters, Vol. 9, No. 12, pp. 410-413, 2002. [Stal1999] W. Stallings, Cryptography and Network Security: Principles and Practice, Prentice Hall International, Inc., Second edition, 1999. [Swan1997] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Data Hiding for Video-in-Video,” Proceedings of International Conference on Image Processing, Vol. 2, pp. 676-679, 1997. [Tsai2000] M.-J. Tsai, K.-Y. Yu, and Y.-Z. Chen, “Joint Wavelet and Spatial Transformation for Digital Watermarking,” IEEE Transactions on Consumer Electronics, Vol. 46, pp. 241-245, 2000. [Voya1996a] G. Voyatzis and I. Pitas, “Chaotic Mixing of Digital Images and Applications to Watermarking,” Proceedings of European Conference on Multimedia Applications, Services and techniques (ECMAST ''96), Vol. 2, pp. 687-695, May, 1996. [Voya1996b] G. Voyatzis and I. Pitas, “Applications of Toral Automorphisms in Image Watermarking,” Proceedings of the International Conference on Image Processing, Vol. 2, pp. 237-240, 1996. [Wang2001] R. Z. Wang, C. F. Lin, and J. C. Lin, “Image Hiding by Optimal LSB Substitution and Genetic Algorithm,” Pattern Recognition, Vol. 34, pp. 671-683, Mar. 2001. [Wang2008] C. M. Wang, N. I. Wu, and C. S. Tsai, “A High Quality Steganographic Method with Pixel-value Differencing and Modulus Function,” The Journal of Systems and Software, Vol. 81, pp. 150-158, 2008. [Wayn2002] P. Wayner, Disappearing Cryptography - Information Hiding: Steganography & Watermarking, Second Edition, Morgan Kaufmann, San Francisco, 2002. [Wolf1996] R. B. Wolfgang and E. J. Delp, “A Watermark for Digital Images,” Proceedings of the IEEE International Conference on Image Processing, Vol. 3, pp. 219-222, 1996. [Wu1998] M. Wu and B. Liu, “Watermarking for Image Authentication,” Proceedings of IEEE International Conference Image Processing, Vol. 2, pp. 437-441, 1998. [Zhan2008] X. Zhang, S. Wang, and Z. Zhou “Multibit Assignment Steganography in Palette Images,” IEEE Signal Processing Letters, Vol. 196, Issue. 1, pp. 40-54, 2008.
本文針對資訊隱藏的議題,研究秘密訊息認證與易碎型浮水印影像認證之技巧。於第三章中提出一個「具秘密訊息認證之高品質資訊偽裝演算法」。我們根據組合理論,提出一個認證碼產生技術。首先,我們在發送端對輸入的每一小段秘密訊息產生其專屬之認證碼。接著,我們結合秘密訊息與所對應產生的認證碼成為組合訊息。最後,我們嵌入組合訊息,產生偽裝彩色影像。當接收端欲做訊息認證時,我們首先擷取出原始認證碼,接著我們再次使用認證碼產生技術,根據目前擷取出之小段秘密訊息,產生其對應之認證碼。藉由比對產生之認證碼與原始認證碼,即可得知該段秘密訊息是否正確;如訊息遭受竄改或破壞,我們亦可定位其錯誤之位置,達到秘密訊息認證之目的。此外,我們使用多基底訊息嵌入技巧,並透過計算出之最佳基底,並經過最佳化訊息嵌入程序來嵌入組合訊息,藉此降低偽裝彩色影像因訊息嵌入所導致的像素數值變動量,產生高視覺品質的偽裝彩色影像。實驗結果顯示:我們的演算法可支援3~5位元之認證碼;對於秘密訊息認證可達到介於91%~98%間之高偵測正確率;可產生PSNR值介於40~48 dB間之高視覺品質的偽裝彩色影像。
我們發展延伸前述之技術到影像認證之範疇。我們在第四章提出「植基於組合理論之易碎型浮水印彩色影像認證演算法」。本影像認證演算法乃是屬於內容驗證,其主要特點就是能夠正確定位出影像遭受竄改的位置。首先,我們對影像作 2×2區塊化切割,並賦予1~32之數值代表其對應之區塊編號。接著,我們依照秘密金鑰所賦予之順序,依次處理每個區塊,並擷取其5 MSB之區塊特徵。對每個處理之區塊,我們依照研發的認證技術,產生區塊特徵認證碼,並結合區塊編號成為認證資料。最後,我們將這些認證資料嵌入原始影像,即可產生浮水印影像。同樣的,藉由比對認證資料之異同,我們可以偵測影像是否遭受竄改,更可進一步的定位其竄改之位置。我們也同樣的使用多基底訊息嵌入技巧,藉此來降低像素變動量,以提高浮水印影像之視覺品質。除此之外,本演算法除了能應用於灰階影像外,應用於彩色影像時,擁有更好的表現。經過上述步驟,我們便可得到高竄改偵測率且高影像品質的浮水印影像。實驗結果顯示:我們的整體成效優於目前文獻之結果。我們的演算法可以100%偵測並定位彩色影像之竄改;對於灰階影像,可達到98%的平均竄改偵測率;浮水印影像之品質平均PSNR值皆高於49dB以上。

Little research has been conducted for secret message authentication when embedding messages into the cover medium for steganography. In this thesis, we propose a new message authentication algorithm using the combinatorial theory. Our algorithm can produce three types of authentication codes with respect to different lengths of a secret message in order to satisfy various degrees of the authentication requirement.
For each segment of secret message we generate a corresponding authentication code. By jointing it to the original segment of the secret message we construct the combined message. This study presents a multi-base message embedding technique that embeds the combined message into a cover color image, which leads to producing a stego color image with low distortion and high visual quality. In order to verify the integrity of the secret message we first extract the combined message from the stego color image producing the extracted message and the original authentication code. Given the extracted message, we then re-generate a new authentication code. Thus, our scheme is able to localize any segment of the message that is being tampered with by comparing the original authentication code with the new one that has just been created. These techniques cause the algorithm to have a high correct-detection rate, and also produce a higher quality of the color stego-image. Experimental results show that by using three types of authentication codes, our proposed scheme achieves a steady correct-detection rate in the range of 91%-98% when the message is under 2%-98% of malicious attacks. The stego image has demonstrated a high visual quality achieving the PSNR value in the range of 40-48 dB.
We extend our algorithm to satisfy authentication for the host image by using a fragile watermarking mechanism. We partition the original image into a number of 22 sub-blocks, and for each sub-block, we employ the torus automorphism scheme to randomly assign a sub-block identification number from one of the numbers selected in the range of 1-32. When the original image is a color image, we operate our scheme channel by channel. For each sub-block, we extract the corresponding features from the five most significant bits (5-MSB) leading to the generation of 15 bits of the feature data using the combinatorial theory. Given these feature data, we then can construct three authentication codes, each of which has a length of 4 bits. We joint these authentication codes to the sub-block identification number using a checksum operation to produce a 7-bits authentication data. Using this proposed multi-base message embedding technique we can embed the authentication data into the original image producing a watermarked image with low distortion and high visual quality. To verify the contents of the watermarked image, we first extract the authentication data from a sub-block. Then, we apply the same feature extraction process on the 5-MSB of this sub-block in order to generate a new authentication data. Thus, our scheme is able to localize any parts of an image that has been tampered with by comparing the original authentication data with the new one that has just been produced. Experiment results show that our proposed scheme achieves an average tamper-detection rate of 98% for the grayscale images, and we can reach 100% of the tamper-detection rate for the color images when the watermarked image is under 10%-90% of a cut-and-paste malicious attack. The watermarked image has demonstrated a high visual quality achieving the PSNR value in the range of 49 dB. Our results reveal that the proposed scheme outperforms those achieved by the current state-of-the-art algorithms.
In conclusion, we present two authentication algorithms, and experimental results which demonstrate their feasibilities to achieve a high correct-detection rate and tamper-detection rate. Both algorithms can produce an image with high visual quality.
其他識別: U0005-1607200916180300
Appears in Collections:資訊網路與多媒體研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.