Please use this identifier to cite or link to this item:
標題: 植基於染色質免疫沉澱定序之上游轉錄因素之微小核醣核酸預測系統
A microRNA prediction system based on the chIP-Seq upstream transcriptional elements data
作者: 侯昕延
Hou, Sin-Yan
關鍵字: microRNA;預測系統;轉錄因子;組蛋白修飾;甲基化修飾
出版社: 資訊科學與工程學系所
引用: 1. Clark, D.P., Molecular Biology: Understanding the Genetic Revolution. 2007: Elsevier. 2. Buckingham, S., The major world of microRNAs. Horizon Symposia. Understanding the RNAissance. 2003. 3. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54. 4. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6. 5. Johnston, R.J. and O. Hobert, A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 2003. 426(6968): p. 845-9. 6. Chang, S., et al., MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature, 2004. 430(7001): p. 785-9. 7. Chen, C.Z., et al., MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004. 303(5654): p. 83-6. 8. Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): p. 647-58. 9. Tomari, Y., and Zamore, P. D., MicroRNA biogenesis: drosha can''t cut it without a partner. Curr Biol, 2005. 10. Jensen, P.R. and K. Hammer, The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol, 1998. 64(1): p. 82-7. 11. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97. 12. Ohler, U., et al., Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA, 2004. 10(9): p. 1309-22. 13. Borchert, G.M., W. Lanier, and B.L. Davidson, RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 2006. 13(12): p. 1097-101. 14. O''Donnell, K.A., et al., c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005. 435(7043): p. 839-43. 15. Bommer, G.T., et al., p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol, 2007. 17(15): p. 1298-307. 16. Heintzman, N.D., et al., Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 2007. 39(3): p. 311-8. 17. Bernstein, B.E., et al., Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 2005. 120(2): p. 169-81. 18. Pokholok, D.K., et al., Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 2005. 122(4): p. 517-27. 19. Santos-Rosa, H., et al., Active genes are tri-methylated at K4 of histone H3. Nature, 2004. 20. Schneider, R., et al., Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol, 2004. 6(1): p. 73-7. 21. Turner, B.M., Cellular memory and the histone code. Cell, 2002. 111(3): p. 285-91. 22. Noyer-Weidner, M. and T.A. Trautner, Methylation of DNA in prokaryotes. EXS, 1993. 64: p. 39-108. 23. Rosenbloom, K.R., et al., ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res, 2010. 24. Mardis, E.R., ChIP-seq: welcome to the new frontier. Nat Methods, 2007. 4(8): p. 613-4. 25. Lim, L.P., et al., The microRNAs of Caenorhabditis elegans. Genes Dev, 2003. 17(8): p. 991-1008. 26. Lai, E.C., et al., Computational identification of Drosophila microRNA genes. Genome Biol, 2003. 4(7): p. 42. 27. Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., Tuschl, T., van Nimwegen, E., and Zavolan, M., Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics, 2005. 28. Griffiths-Jones, S., The microRNA Registry. Nucleic Acids Res, 2004. 32(Database issue): p. D109-11. 29. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): p. D140-4. 30. Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008. 36(Database issue): p. D154-8. 31. Kozomara, A. and S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011. 39(Database issue): p. D152-7. 32. Chang, T.C., et al., Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 2007. 26(5): p. 745-52. 33. Gruber, A.R., et al., The Vienna RNA websuite. Nucleic Acids Res, 2008. 36(Web Server issue): p. W70-4. 34. Hofacker, I.L. and P.F. Stadler, Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics, 2006. 22(10): p. 1172-6. 35. Martin, W.N. and W.M. Spears, Foundations of Genetic Algorithms 6. The Morgan Kaufmann Series in Evolutionary Computation. 2001. 36. Boya Xie, R.H., Qin Ding and Di Wu, MIRSAT & MIRCDB: An Integrated microRNA Sequence Analysis Tool and a Cancer-associated microRNA Database. International Conference on Bioinformatics and Computational Biology, 2010. 37. Calin, G.A. and C.M. Croce, MicroRNA-cancer connection: the beginning of a new tale. Cancer Res, 2006. 66(15): p. 7390-4.
Micro RNA (miRNA)為一種短片段且非編碼的RNA,miRNA的表現跟細胞的分化,凋亡及某些癌症有關,因此研究miRNA機制與尋找在基因體上的位置,可預防疾病的發生。傳統上,生物學家透過生物實驗尋找miRNA,本論文提供計算導向方式的預測系統,可避免miRNA具組織特異性外,還可節省時間成本。除了判斷miRNA結構特徵外,並考慮上游是否存在轉錄因子結合點、組蛋白修飾區與甲基化修飾,可降低預測結果產生偽陽性的情況並讓預測結果更具生物意義。最後,本研究方法再利用其他物種miRNA預測人類未知的miRNA以及將miRNA歸類為與癌細胞相關或與正常細胞相關,可發現miRNA在疾病中所扮演致癌基因或抑癌基因的角色。

Micro RNAs (miRNA) are short and noncoding RNAs. miRNA expression associates with cell differentiation, apoptosis and formation of cancer. Therefore, the research of the miRNA mechanism and marking their positions in the genome, can achieve the prevention of illnesses. Traditionally, biologists try to find miRNA by utilizing biological experiments. This thesis proposed a calculated-oriented prediction approach. It can avoid tissue -specific characteristics of miRNA and reduce the cost of time. In addition to using the structural characteristics of the miRNA, considering the existence of the transcription factor binding site , the histone modification and the methylation in the upstream region , can reduce the false positive results in miRNA prediction and also obtain more biological meaning. Finally, this study further used other species to predict unknown human miRNAs and classified miRNA into the cancer cell related or the normal cell related. It can determine if a miRNA plays an oncogene or tumor suppressor gene.
Appears in Collections:資訊科學與工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.