Please use this identifier to cite or link to this item:
標題: 利用關聯式規則解決台語文轉音系統中一詞多音之歧異
Applying Association Rules in Solving the Polysemy Problem in a Chinese to Taiwanese TTS System
作者: 李尉綸
Li, Wei-Lun
關鍵字: 關聯式規則;Association Rules;關聯式分類;一詞多音;台語文轉音系統;監督式學習;Associative Classification;polysemy;Chinese to Taiwanese TTS system;supervised learning
出版社: 資訊網路多媒體研究所
引用: [1] B. Liu, W. Hsu and Y. Ma, "Integrating classification and association rule mining", Knowledge Discovery and Data Mining, pp. 86, 80, 1998. [2] Brill, E. “Automatic grammar induction and parsing free text: A transformation-based approach.” In Proceedings of the 31st Meeting of the Association for Computational Linguistics. Columbus, Ohio, USA, pp. 259-265, 1993. [3] Brill, E. “Some Advances in Transformation-Based Part-of-Speech Tagging.” In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94) , pp. 722-727, 1994. [4] C. H. Hwang, "Text to Pronunciation Conversion in Taiwanese", Master thesis, Institute of Statistics, National Tsing Hua University, 1996. [5] C. H. Wu, C. C. Hsia, J. F. Chen, and J. F. Wang, ”Variable-Length Unit Selection in TTS Using Structural Syntactic Cost”, IEEE Transactions on Audio, Speech, and Language Processing, Vol. 15, No.4, pp. 1227-1235, 2007. [6] C. Shih and R. Sproat, “Issues in Text-to-Speech Conversion for Mandarin”, Computational Linguistics and Chinese Language Processing, Vol., 1, No. 1, pp. 37-86, 1996. [7] Fadi Thabtah, "A review of associative classification mining." , Knowledge Engineering Review, Vol. 22, pp. 37-65, 2007. [8] Frederick Jelinek , “Statistical Methods for Speech Recognition”, The MIT Press Cambridge Massachusetts, 1997. [9] J. Y. Huang, “Implementation of Tone Sandhi Rules and Tagger for Taiwanese TTS”, Master thesis, Department of Communication Engineering, National Chiao Tung University, 2001. [10] Jiawei Han, Micheline Kamber, ”Data Mining Concepts and Techniques”, Morgan Kaufmann publishers, 1999. [11] M. S. Yu, T. Y. Chang, T. H. Hsu, and Y. H. Tsai, "A Mandarin Text-to-Speech System Using Prosodic Hierarchy and a Large Number of Words", Proceedings of the 17th Conference on Computational Linguistics and Speech Processing, (ROCLING XVII), pp. 183-202, 2005. [12] Maron M.E., “Automatic Indexing : an Experimental Inquiry”, J. of the ACM, Vol. 8, pp404-417, 1961. [13] R. Agrawal and R. Srikant. “Fast algorithms for mining association rules.” Presented at Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1994. [14] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5, pp. 914-923, 1993. [15] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large database. In Proc. ACM SIGMOD Intl. Conf. Management of Data, pp. 207-216, Washington, DC, 1993. [16] S. H. Chen, S. H. Hwang, and Y. R. Wang, “A Mandarin Text-to-Speech System”, Computational Linguistics and Chinese Language Processing, Vol. 1, No. 1, pp. 87-100, 1996. [17] Y. J. Lin, M. S. Yu, and C. J. Huang, “The Polysemy Problems, An Important Issue in a Chinese to Taiwanese TTS System”, Proceedings of the 2008 International Congress on Image and Signal Processing , Paper number P1234, May 28-30, Sanya, China, 2008. [18] Y. J. Lin, M. S. Yu, and C. Y. Lin, "Using Chi-Square Automatic Interaction Detector to Solve the Polysemy Problems in a Chinese to Taiwanese TTS System” , in Proceeding of The 8th International Conference on Intelligent Systems Design and Applications (ISDA 2008), pp.362-367, 2008. [19] Y. J. Lin, W. S. Ji, M. S. Yu, and S. D. Lee, “Some Important Issues on Text Analysis in a Chinese to Taiwanese TTS System”, Proceedings of the 9th IEEE International Workshop on Cellular Neural Networks and their Applications , 2005. [20] Y. J. Lin, M. S. Yu, and C. Y. Lin, “A Combined Approach to the Polysemy Problems in a Chinese to Taiwanese TTS System, ”The 7th International Symposium on Chinese Spoken Language Processing, 2010. [21] Y. J. Lin, M. S. Yu, C. Y. Lin, and Y. C. Lin, “A Layered Approach to the Polysemy Problem in a Chinese to Taiwanese TTS System, ”Journal of Information Science and Engineering, Vol. 26, No. 5, 2010. [22] Y. J. Lin, M. S. Yu, W. D. Yang and C. Y. Lin, “The Prediction of Pronunciation of Polyphonic Words in a Chinese to Taiwanese TTS System, ” International Journal of Advanced Information Technologies (IJAIT), Vol. 5, No. 1, pp.195-213, 2011. [23] 中文詞庫八萬目詞 [24] 中央研究院平衡語料庫 [25] 行政院新聞局 ,“2008年中華民國英文年鑑",2008 [26] 游子宜,“台灣閩南語一字多音之研究上、下篇",國立政治大學中國文學研究所,1997。 [27] 楊文德,"利用規則轉換學習方法解決台語一詞多音之歧義",國立中興大學資訊科學與工程學系,2012年一月 [28] 董振東、董強,知網(HowNet), [29] 廣義知網知識本體架構(Extended-HowNet Ontology) [30] 廣義知網知識本體架構線上瀏覽系統 [31] 鍾祥睿,”台語TTS系統之改進”,國立交通大學電信工程系所碩士論文,2002。

In a Chinese to Taiwanese Text-to-Speech(TTS) system, the polysemy problem is one of the important issues. In Taiwanese, one word may have several pronunciations. A Taiwanese TTS System can''t work well if wrong pronunciation is synthesized. This research focuses on the polysemy problems in a Chinese to Taiwanese TTS system.
In solving this problem, we apply association rules to predict the pronunciation for the polysemy words in Taiwanese. We focused on six commonly used words with polysemy problem in this thesis. They are 『上』(up), 『下』(down), 『不』(no) , 『你』(you), 『我』(I), and 『他』(he/she) .
The accuracies of experimental results are 93.99%, 94.44%, 77.82%, 95.11%, 96.35% and 95.99%, respectively. Experiment results show that the proposed approach can achieve higher precisions in these six words than the existing methods.
其他識別: U0005-1508201220493100
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7099083012-1.pdf2.36 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.