Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1986
DC FieldValueLanguage
dc.contributor方得華zh_TW
dc.contributorTe-Hua Fangen_US
dc.contributor吳乾埼zh_TW
dc.contributor盧銘詮zh_TW
dc.contributorChyan-Chyi Wuen_US
dc.contributorMing-Chyuan Luen_US
dc.contributor.advisor戴慶良zh_TW
dc.contributor.advisorChing-Liang Daien_US
dc.contributor.author吳昌哲zh_TW
dc.contributor.authorWu, Chang-Cheen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-05T11:42:16Z-
dc.date.available2014-06-05T11:42:16Z-
dc.identifierU0005-0602200910023300zh_TW
dc.identifier.citation[1]J. Pan, G.L. Tonkay, R.H. Storer, R.M. Sallade and D.J. Leandri, “Critical variables of solder paste stencil printing for micro BGA and pitch QFP,” Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 94-101, 1999. [2]R.S. Clouthier, “SMT printing process for fine and ultra fine pitch,” AMTX, Inc, Canandaigua, New York, 1995. [3]D.T. Rooney, D.P. Nager, D. Geiger and D. Shanguan, “Evaluation of wire bonding performance process conditions and metallurgical integrity of chip on board wire bonds,” Microelectronics and Reliability, Vol. 45, pp. 379-390, 2005. [4]K. Gilleo, “Direct chip interconnect using polymer bonding,” Components Hybrids and Manufacturing Technology, Vol. 13, pp. 229-234, 1990. [5]R. Joshi, “Chip on glass-interconnect for rowcolumn driver packaging,” Microelectronics Journal, Vol. 29, pp. 343-349, 1998. [6]M. A. Uddin, M. O. Alam, Y. C. Chan and H. P. Chan, “Adhesion strength and contact resistance of flip chip on flex packages-effect of curing degree of anisotropic conductive film,” Microelectronics Reliability, Vol. 44, pp. 505-514, 2004. [7]J. H. Lau, “Flip chip technologies,” McGraw-Hill, pp. 289-338, 1996. [8]A.Z. Miric and A. Grusd, “Lead-free alloys,” Soldering and Surface Mount Technology, Vol. 10, pp. 19-25, 1998. [9]D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-free solder for flip-chip interconnects,” JOM Journal of the Minerals, Metals and Materials Society, Vol. 53, 2001. [10]台灣電路板協會,印刷電路板概論,全華科技圖書,民國94年。 [11]馬振基,高分子複合材料,正中出版社,民國84年。 [12]林金雀,聚醯亞胺應用與技術發展趨勢專題調查,工研院化工所,民國88年。 [13]E. Sugimoto, “Applications of polyimide films to the electrical and electronic industries in Japan,” Electrical Insulation Magazine, IEEE, Vol. 5, pp. 15-23, 1989. [14]S. Consiglio, T. Fleschutz, G. Seliger and J. Seutemann, “Development of a duothermal soldering process,” Manufacturing Technology, Vol. 55, pp. 33-36, 2006. [15]台灣電路板協會,電路板與無鉛焊接,全華科技圖書,民國95年。 [16]G. Schiebel, “Automatic gang bonding, the altermative process,” Electronic Manufacturing Technology Symposium, IEMT.12th International, IEEE, pp. 146-155, 1992. [17]http://www.muc.miyachi.com [18]http://www.avio.co.jp [19]P. Brackell, “Achieving interconnection with pulse-heated bonding,” Circuits Assembly, Vol. 11, pp. 46-52, 2000. [20]H. Kristiansen and J. Liu, “Overview of conductive adhesive interconnection technology for LCDs,” Components, Packaging, and Manufacturing Technology, Vol. 21, pp. 208-214, 1998. [21]K. Matsuda and I. Watanabe, “Interconnection technologies of anisotropic conductive films and their application to flexible electronics,” High Density packaging and Microsystem Integration International Symposium, pp. 1-4, 2007. [22]http://www.sony.com.tw [23]H.J. Kim, C.K. Chung, M.J. Yim, S.M. Hong, S.Y. Jang, Y.J. Moon and K.W. Paik, “Study on bubble formation in rigid-flexible substrates bonding using anisotropic conductive films(ACFs) and their effects on the ACF joint reliability,” Electronic Components and Technology Conference, pp. 952-958, 2006. [24]W.R. Jong, S.H. Peng and L. Chung, “A study of the effect on deformations for ACF applications,” Microsystems, Packaging, Assembly and Circuits Technology, IMPACT 2007 International, pp. 71-74, 2007. [25]Z. Wei, C.Y. Poo and L.S. Waf, “Development of fine pitch solder joint interconnection technology,” Electronic Packaging Technology Conference, Vol. 2, pp. 509-514, 2005. [26]J. Zhou, L. Zhuang, Z. He and D. Herscovici, “Practical design simulation and prototype of a hot bar blade for printed circuit board soldering,” Journal of Manufacturing Systems, Vol. 20, pp. 177-187, 2001. [27]李仁傑,脈衝電流加熱板外形對均溫性之影響,逢甲大學材料與製造工程機械工程組碩士論文,民國九十四年。 [28]R. Strauss, SMT Soldering Handbook, Newnes, Oxford, 1998. [29]洪慶章、劉清吉、郭嘉源,ANSYS教學範例,知城數位科技,民國90年。 [30]陳新郁、林政仁譯,有限元素分析-理論與應用ANSYS,高立圖書,民國90年。 [31]ANSYS Inc, ANSYS Release 10.0 Documentation: Element Reference-Element Library, 2006. [32]張瑞慶譯,非傳統加工,高立圖書,民國84年。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1986-
dc.description.abstract在光電產業中,有各式各樣的封裝結合技術,其中之一為壓焊製程,壓焊製程之原理,是透過脈衝電流使高阻抗材料之壓焊刀頭達到瞬間加熱,再將熱傳送到結合之介質-無鉛焊錫,為了使焊錫融化,刀頭表面溫度勢必高出焊錫熔點許多。在高溫下,壓焊刀頭表面之均溫性亦顯得非常重要,否則將破壞壓著物部品表面之結構,間接地將影響產品本身的信賴性與壽命。 本研究的目的在於改良壓焊製程中板狀壓焊刀頭,其兩端與中間之溫度差異過大之問題。壓焊刀頭溫差過大,在實際壓著後,會造成被壓著物,例軟性印刷電路板之表面基材受損及燒焦。針對此種均溫性不佳之板狀壓焊刀頭,本研究透過ANSYS軟體模擬,首先改變刀頭幾何外型形狀,以及脈衝電流之流動方式,其次藉由改變電流密度與熱傳導的方式,進而改善壓焊刀頭之均溫性。新設計之壓焊刀頭,不需變更或改造壓焊機台,以及製程條件,且經實際測試後,其刀頭底部兩端與中間之溫差已在5℃以內,結果顯示測量數據與模擬結果一致,且實際導入壓焊作業時,已無發現被壓著物之表面基材受損或燒焦,針對改善後壓焊刀頭之均溫性與作業性,皆已達到製程上可以接受之範圍。zh_TW
dc.description.abstractIn optoelectronics industry, there are various packaging interconnect technologies, such as hot bar process. The hot bar process uses to provide pulse current flow to instantly heat up the hot bar that is made by high resistance material, and then conducting the thermal to interconnect medium- lead free solder. In order to melt solder, the temperature of hot bar surface is much higher than solder melting point. Hence, the temperature consistency for the hot bar surface is very important; otherwise the over heating will damage the surface structure of soldering subject, which impacts directly the product reliability and life time. This study focuses on overcoming thermal inconsistency on the two ends and the center of the hot bar during the soldering process. The huge temperature difference damages the soldering subject. For example, flexible printed circuit board surface substrate is burned after soldering process. In this work, we improve the temperature inconsistency of hot bar by way of changing the hot bar geometrical shape and the pulse current flow method. The current density and thermal conduction methods are utilized to study the temperature consistency of hot bar. The improved hot bar was actually tested, and the temperature of two ends and the center difference was under 5℃, which was consistent with the result of simulation. The surface of soldering subject substrate was not damaged or burned after soldering process. The improved hot bar had a consistency temperature and it met the requirement of the process.en_US
dc.description.tableofcontents誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 7 第二章 壓焊設備與技術 8 2.1 壓焊原理 8 2.2 壓焊設備 9 2.2.1 電源供應器 10 2.2.2 熱電耦 11 2.2.3 固定座機構 12 2.2.4 壓焊刀頭 13 2.2.5 壓焊製程之治具 15 2.3 壓焊之作業流程 16 2.3.1 基本壓焊製程步驟 16 2.3.2 壓焊製程之溫度曲線 18 2.4 壓焊相關材料 19 2.4.1 軟性印刷電路板 19 2.4.2 無鉛錫膏 21 2.4.3 助焊劑種類與功能 23 第三章 壓焊刀頭之設計與分析 25 3.1 壓焊刀頭設計原理 25 3.2 ANSYS軟體介紹 27 3.3 模擬分析流程及基本假設 28 3.4 電熱耦合效應模擬及分析 30 3.4.1 前處理 30 3.4.2 求解 33 3.4.3 後處理 33 3.5 最佳化設計 35 3.6 應力應變分析 65 第四章 實驗結果與討論 71 4.1 壓焊刀頭之製作與壓焊機之操作說明 71 4.2 壓焊製程參數設定 72 4.3 壓焊製程之實驗方法 73 4.4 新式刀頭實溫實驗結果 76 4.5 新式刀頭壓著實驗測試 79 4.6 結果與討論 84 第五章 結論與未來展望 85 參考文獻 86zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602200910023300en_US
dc.subjecthot baren_US
dc.subject壓焊zh_TW
dc.subjectuniform temperatureen_US
dc.subjectfinite element analysisen_US
dc.subject均溫性zh_TW
dc.subject有限元素分析zh_TW
dc.title脈衝式熱傳對壓焊刀頭斷面溫差之影響zh_TW
dc.titleInfluence of pulse heat transfer for thermal difference of hot-bar on soldering processen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.