Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorPo-Whei Huangen_US
dc.contributor.authorLiao, Chih-Yuanen_US
dc.identifier.citation[1] 王世翼, “基於多尺度雙向濾波器和IHS轉換的一種新的全色態與多光譜影像融合技術,” 國立中興大學資訊科學與工程學系碩士論文, 2012. [2] Buchanan, M. D. Effective utilization of color in multidimensional data presentation, Proceedings of the Society of Photo-Optical Engineers, Vol.199,pp.9-19. 1979. [3] Audicana, Jose Luis Saleta, Raquel Garcia Catalan, and Rafael Garcia, “Fusion of Multispectral and Panchromatic Images Using Improved IHS and PCA Mergers Based on Wavelet Decomposition,” IEEE Transactions on geoscience and remote sensing, Vol.43, pp.1291-1299, January 2004. [4] Chavez, P. S. Jr. and A. Y. Kwarteng, “Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis,” Photogrammetric Engineering & Remote Sensing, Vol.55, No.3, pp.339-348, 1989. [5] Turk, M. and Pentland, A. , “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, Volume 3, pp. 71-86, 1991. [6] M.N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation, “ IEEE Transactions on Image Processing, Vol.14 pp.2091-2106, 2005. [7] Tianjie LI and Yuanyuan WANG , “Biological image fusion using a NSCT based variable-weight method,” Information Fusion, Vol.12, No.2, pp.85-92, 2011. [8] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color Images,” IEEE International Conference on Computer Vision, Bombay, India., 1998. [9] F. Durand and J. Dorsey, “Fast bilteral filtering for the display of high dynamic range image,” SIGGRAPH2002 conference Proceedings, Annual Conference Series, ACM Press/ACM SIGGRAPH , pp. 257-265, 2002. [10] FLEISHMAN, S., DRORI, I. AND COHEN-OR, D., “Bilateral mesh denoising.”, ACM Transaction on Graphics, Vol.22, No.3, pp. 950-953, 2003. [11] R. T. Chin and C. L. Yeh. “Quantitative evaluation of some edge-preserving noise-smoothing techniques.”, CVGIP, Vol.23, pp.67–91, 1983. [12] R. Fattal, M. Agrawala and S. Rusinkiewicz, “Multiscale shape and detail enhancement from multi-light image collections,” ACM Transactions on Graphics, Vol.26, No.3, pp. 51-1–51-9 , 2007. [13] G.M. Rojas, U. Raff, J.C. Quintana, I. Huete and M. Hutchinson, “Image fusion in neuroradiology: three clinical examples including MRI of Parkinson disease, “ Computerized Medical Imaging and Graphics, Vol.31 pp. 17–27 , 2007. [14] S. Daneshvar and H. Ghassemian, “MRI and PET image fusion by combining IHS and retina-inspired models,” Information Fusion Vol.11, pp. 114–123, 2010. [15] Z.B. Wang and Y.D. Ma, “Medical image fusion using m-PCNN,” Information Fusion, Vol.9, pp. 176–185, 2008. [16] H.R. Sheikh and A.C. Bovik, “Image information and visual quality,” IEEE Transactions on Image Processing, Vol.15, pp.430-444, 2006. [17] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man and Cybernetics 9, pp. 62–66, 1979. [18] S. Yang, M. Wang, L. Jiao, R. Wu and Z. Wang, “Image fusion based on a new contourlet packet,” Information Fusion, Vol.11, pp.78-84, 2010.  [19] X.B. Qu, J.W. Yan, H.Z. Xiao and Z.Q. Zhu, “Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain,” Acta Automatica Sinica, Vol.34, pp.1508–1514, 2008. [20] H. Li, B.S. Manjunath and S.K. Mitra, “Multisensor image fusion using the wavelet transform,” Graphical Models and Image Processing, Vol.57, pp.235-245, 1995. [21] J. Nunez, X. Otazu, O. Fors, A. Prades, V. Pala and R. Arbiol, “Multiresolution-based image fusion with additive wavelet decomposition,” IEEE Transactions on Geoscience and Remote Sensing, Vol.37, pp.1204-1211, 1999. [22] B. Aiazzi, L. Alparone, S. Baronti and I. Pippi, “Quality assessment of decision-driven pyramid-based fusion of high resolution multispectral with panchromatic image data,” Proceeding of the IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, pp. 337–341, 2001. [23] T.M. Tu, S.C. Su, H.C. Shyu and P.S. Huang, “A new look at IHS-like image fusion methods,” Information Fusion, Vol.2, pp. 177–186, 2001. [24] T. Ranchin, B. Aiazzi, L. Alparone, S. Baronti and L. Wald, “Image fusion-the ARSIS concept and some successful implementation schemes,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol.58, pp.4-18, 2003. [25] X.B. Qu, J.W. Yan, H.Z. Xiao and Z.Q. Zhu, “Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain,” Acta Automatica Sinica, Vol.34, pp. 1508–1514, 2008.  [26] Q. Zhang and B.L. Guo, “Multifocus image fusion using the nonsubsampled contourlet transform,” Signal Processing, Vol.89, pp. 1334–1346 , 2009. [27] S. Yang, M. Wang, L. Jiao, R. Wu and Z. Wang, “Image fusion based on a new contourlet packet,” Information Fusion, Vol.11, pp.78-84, 2010. [28] X.H. Yang and L.C. Jiao, “Fusion algorithm for remote sensing images based on nonsubsampled contourlet transform,” Acta Automatica Sinica, Vol.34, pp.274-281, 2008.en_US
dc.description.abstract在生物研究上有著重要貢獻的綠色螢光蛋白(Green Fluorescent Protein,簡稱GFP)與提供良好的精細結構的相位襯度的圖像(Phase Contrast image),結合這兩者,可以補強在綠色螢光蛋白圖片上較少的區域資料及結構資料,幫助觀察者更容易得到所要觀察分析的資料。 本論文提出雙重多尺度雙向濾波器的想法。先在YCbCr色彩空間利用多尺度的雙向濾波器將兩者融合,得到一張有著顏色資訊及結構資訊的暫存圖。再將此圖當作是原始的螢光圖來與結構圖在IHS色彩空間進行再一次的多尺度雙向濾波器的融合。除了消除掉原有的雜訊外,更將結構的資訊充分的與螢光圖融合。 實驗的結果與數據也證明本論文的方法比其他的融合方法來的有效。zh_TW
dc.description.abstractGreen Fluorescent Protein, GFP, has great contribution to biological study. With phase contrast image provide detail structure information, the biological image fusion help a lot in protein study. In this paper, we provide a new idea to fuse these two images which the GFP image provide the color information and phase contrast image provide the local and structure information.We first apply a Multi-scale bilateral filter (MSBF) fusion in YCbCr domain with GFP image and contrast image and get a transit image. The transit image then use as the GFP image with the phase contrast image again. After apply the second time’s MSBF in IHS domain, we can get an well-fused image with color information and fine structure information. The experiment and result shows that our idea is better than other fusion method.en_US
dc.description.tableofcontents第一章、緒論 1 1.1 動機、背景與研究目標 1 1.2 論文架構 2 第二章、文獻探討 3 2.1 IHS 影像融合法Intensity-Hue-Saturation(IHS) 3 2.2 主成分分析法(PCA) 7 2.3 非抽樣式輪廓式轉換影像融合法(NonSubsampled Contourlet Transform, NSCT) 8 第三章、雙重雙向濾波器融合法 12 3.1 雙向濾波器(Bilateral Filter, BF) 12 3.2 多尺度雙向濾波器(Multi-Scale Bilateral Filter, MSBF) 15 3.3 IHS domain多尺度雙向濾波器影像融合法 19 3.4 YCbCr domain多尺度雙向濾波器影像融合法 22 3.5 雙重多尺度雙向濾波器影像融合法 24 第四章、實驗結果與分析 26 4.1 評比方法 26 4.2 實驗設計 27 4.3 融合結果 28 4.4 融合圖比較數據 31 第五章、結論與未來研究 33 參考文獻 34zh_TW
dc.subjectGreen Fluorescent Protein (GFP)en_US
dc.subjectPhase contrasten_US
dc.subjectMulti-Scale Bilateral Filter (MSBF)en_US
dc.titleBiological Image Fusion Using Multi-scale Bilateral Filtering Methoden_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:資訊科學與工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.