Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2000
標題: 氣體噴射式微粒加速系統性能分析
Analysis of the Performance of the Gas Driven Particle Acceleration system
作者: 趙士傑
Chao, Shih-Chieh
關鍵字: gene gun;冷噴塗;cold spray;Laval nozzle;one dimensional compressible flow;漸縮漸擴噴嘴;一維可壓縮流
出版社: 機械工程學系所
引用: [1] G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 7th Edition, John Wiley & Sons, Inc., New York, NY, 2001. [2] Anatolii Papyrin, Vladimir Kosarev, Sergey Klinkov, Anatolii Alkhimov, and Vasily M. Fomin. Cold Spray Technology. Elsevier,2006 [3] http://www.cgt-gmbh.de/ [4] H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394. [5] 冷噴塗技術的研究進展 Research Progress in Cold Gas Dynamic Spray Technology 作者:蘇賢湧,周香林,崔華,張濟山, 期刊-核心期刊 表面技術SURFACE TECHNOLOGY 2007年 第05期 [6] X.-J. Ning, J.-H. Jang, H.-J. Kim, The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process, Appl. Surf. Sci. 253 (2007) 7449–7455. [7] T.C. Jen, L.J. Li, W.Z. Cui, Q.H. Chen, M.X. Zhang, Numerical investigations on cold gas dynamic spray process with nano- and micro-size particles, Int. J. Heat Mass Transfer, in press. [8] T.C. Jen, Liangming Pan , Longjian Li , Qinghua Chen, Wenzhi Cui , The acceleration of charged nano-particles in gas stream of supersonic de-Laval-type nozzle coupled with static electric field, Applied Thermal Engineering 26 (2006) 613–621. [9] Victor K. Champagne, The Repair of Magnesiμm Rotorcraft Components by Cold Spray " J Fail. Anal. and Preven. (2008) 8:164–175 [10] Saden H. Zahiri, Sheridan C. Mayo, and Mahnaz Jahedi. “Characterization of Cold Spray Titanium Deposits by X-Ray Microscopy and Microtomography” Microsc. Microanal. 14, 260–266. [11] Gene Delivery to Mammalian Cells (Heiser, W. C. (ed.), Vol. 1. Nonviral Gene Transfer Techniques, in Methods in Molecular Biology (Walker, J., ed.), Vol. 245, Humana Press, 2004. [12] 植物分子育種技術平台之建構-農業生技產業季刊2008 [13] 錢雪豔,楊向東,郭東全,趙桂蘭,王丕武“植物葉綠體遺傳轉化及研究進展”2008. 《分子植物育種》2008年第6卷第5期 [14] J.C. Sanford, T.M. Klein, E.D. Wolf and N. Allen, Delivery of substances into cells and tissues using a particle bombardment process, Part. Sci. Technol. 5 (1987), pp. 27–37 [15] Johnston, S. A. biolistic transformation: microbes to mice. Nature, 346, 776-777 (1990). [16] HARWOOD, W. A., S. M. ROSS, P. CILENTO and J. W. SNAPE, 2000 The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica 111: 67–76 [17] Finer, J.J., Vain, P., Jones, M.W. and McMullen, M.D. 1992. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reports 11: 323−328. [18] Vain, P., Keen, N., Murillo, J., Radius, C., Nemes, C. and Finer, J.J. 1993. Development of the particle inflow gun. Plant Cell Tissue Organ Culture 33: 237−246. [19] Kao CY, Huang SH and Lin CM. 2008. A low-pressure gene gun for genetic transformation of maize (zea mays L.) Plant Biotechnol Rep. 2(4):267-270. [20] Mumper RJ, Cui Z. Genetic immunization by jet injection of targeted pDNA-coated nanoparticles. Methods 2003; 31: 255-262. [21] S.M. Nabulsi, N.W. Page, A.L. Duvai, Y.A. Seabrook, and K.J. Scott, “A gas-driven gene gun for microprojectile methods of genetic engineering”, Meas. Sci. Technol. 5 (1994) 267-274. [22] Proceedings of the Seventh PIMS­MITACS Graduate Industrial Math Modelling Camp, May 10–14, 2004, University of Victoria. Editors: Reinhard Illner and David Leeming. Chapter 1 Optimal Design of Gas Burst Gene Gun. [23] Thomas J Mitchell, Mark A F Kendall, Brian J Bellhouse, “MICRO-PARTICLE PENETRATION TO THE ORAL MUCOSA”, BED-Vol. 50, 2001 Bioengineering Conference, ASME 2001 [24] Mark Kendall, Thomas Mitchell, Peter Wrighton-Smith, “Intradermal ballistic delivery of micro-particles into excised human skin for pharmaceutical applications”, Journal of Biomechanics 37 (2004) 1733–1741 [25] Thermodynamics An Engineering Approach 5Th Ed 2006 - By Cengel And Boles [26] S.A. Morsi, and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 55(2), 193-208,1972. [27] R.P. Chhabra, L. Agarwal, N.K. Sinha , Drag on non- spherical particles: an evaluation of available methods. Powder Technology 101, p. 288- 295, 1999. [28] An analysis of the cold spray process and its coatings 2001 [29] Annamalai, Kalwan & Puri, Ishwar K - Advanced Thermodynamics Engineering [CRC Press 2002] [30] AZEVEDO, J. L. F. ,SCALABRIN, L. C. , Adaptive Mesh Refinement and Coarsening for Aerodynamic Flow Simulations. International Journal for Numerical Methods in Fluids, London, UK, v. 45, n. 10, p. 1107-1122, 2004. [31] J. Pattison , S. Celotto, A. Khan, W. O''Neill, Standoff distance and bow shock phenomena in the Cold Spray process, Surface & Coatings Technology 202 (2008) 1443–1454 [32] Hirotaka Fukanuma , Naoyuki Ohno, Bo Sun, Renzhong Huang, In-flight particle velocity measurements with DPV-2000 in cold spray , Surface & Coatings Technology 201 (2006) 1935–1941 [33] Strain rate effects in microparticle impact J. Phys. D: Appl. Phys., Vol. 10, 1971. [34] M. A. F. Kendall, T. J. Mitchell, and P. Wrighton-Smith, “Intradermal ballistic delivery of micro-particles into excised human skin for drug and vaccine applications,” J. Biomech., vol. 37, pp. 1733–1741, 2004b. [35] Joachim W. Fluhr, Peter Elsner, Enzo Berardesca, Howard I. Maibach" Bioengineering of the Skin: Water and Stratum Corneum"CRC Press; 2 edition (27 Aug 2004)
摘要: 
氣體噴射式微粒加速系統主要的目的為有效地提高微粒在受體表面上的衝擊速度,進而使微粒與受體間交互作用達到所預期的工作目標。一個完整的系統可分為高壓系統、噴嘴、加熱器、粒子填充機,此系統可應用在噴塗工業與醫學工程方面,例如冷噴塗與基因投遞上。
微粒加速可分成三個部份做探討,第一部分為噴嘴幾何形狀設計以有效的提高粒子在系統的出口速度,第二部分為噴嘴外部至目標物間的流場對於微粒加速的影響,使微粒達到受體表面時的速度提高,第三部分為微粒進入目標物內部的穿透深度。本研究主要以一維氣動力學模式進行噴嘴內部流場分析與加熱器對微粒加速的影響,並以CFD進行微粒在噴嘴外部與受體間的關係。
研究結果顯示在噴塗應用方面,以甲烷燃燒預熱氣體的方式,提高氣體的溫度和出口速度,當流場為超音速流時,氣體的速度與溫度都可以使微粒達到臨界速度且低於微粒的熔點溫度,在噴塗5~50μm的微粒時,噴嘴與受體間的距離受到弓形震波的影響較小,對於大於15μm粒徑而言噴塗距離的增加可以使微粒繼續加速,粒徑介於(5μm~50μm)時,粒徑越大在噴嘴內的加速越慢,在受體與系統間會受到震波的影響較小。在生醫方面的應用,改變微粒的密度,系統對於微粒加速的影響較小,但對於穿透深度的影響較大,大於5μm粒徑的粒子加速較慢但衝擊參數會增加。

The objective of this research is used to generate high impact speed particles with the Gas Driven Particle Acceleration system. A complete system is consisted of four parts, including a high pressure gas supply system, a converging diverging nozzle, a heater and a particle injection system. The particle can be used to delivery medicine, which is called a gene gun, or to deposit on a surface, which is called a cold spray.
The studies on the effect of the particle acceleration can be divided into three regions. The first region is inside the nozzle. The effect of nozzle design on the particle exit velocity is the focus of studies in this region. The second region is between the exit of nozzle and the surface surface. The third region is underneath the target surface. The penetration depth of the particles is modeled in this region considering the viscous force encountered as particles moving inside cells. The acceleration processes is studied with one dimensional compressible flow model and preheat the system using combustion technology in this paper.
The flow field between the nozzle and the object will be analyzed with a commercial CFD package, and the particle impact velocity after being issued out of the nozzle was analyzed.
Results of calculations show that use methane combustion, the gas velocity and temperature are increased. As the particle size increases the exit velocity is reduced. However, the impact parameter is increased for gene delivery. The density does not affect the exit velocity. As a result, the impact parameter is proposal to density. The injection position has little effect on the impact parameter.
URI: http://hdl.handle.net/11455/2000
其他識別: U0005-0801200916484700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.