Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2002
DC FieldValueLanguage
dc.contributor羅鴻生zh_TW
dc.contributor黃建民zh_TW
dc.contributor郭義雄zh_TW
dc.contributor江俊顯zh_TW
dc.contributor.advisor李興軍zh_TW
dc.contributor.advisorHsing-Juin Leeen_US
dc.contributor.author袁廣麟zh_TW
dc.contributor.authorYuan, Kuang-Linen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-05T11:42:18Z-
dc.date.available2014-06-05T11:42:18Z-
dc.identifierU0005-0808200814404400zh_TW
dc.identifier.citation[1] Lee, H. J. and Chang, C. L., "Deriving the Generalized Power and Efficiency Equations for Jet Propulsion System", JSME International Journal, Vol.44, No.4, Nov, 2001, pp.658-667. [2] Lee, H. J. and Huang, S. C., "On the derivation Process of Reynolds Transport Equation", the International Journal of Mechanical Engineering Education, Vol.21, No.1, 1993, pp.49-53. [3] Caceres, M., Commercial Satellites Surge Ahead, Aeroapace America, (Nov.,1998), p.24-26. [4] Komar, D. R., Air Breathing Propulsion - Research and Technology,Aeroapace America, (Dec., 1998), p.57. [5] Caceres, M., Too Many Launch Vehicles for the Market? Aeroapace America, (Feb., 1998), p.24-26. [6] Wilcanan, J. W., Fighters Vie for Future Markets, Aeroapace America, (Jan., 1998), p.24-26. [7] Wilson, J. R., Launching with Laser Light, Aeroapace America, (Mar., 1999), p.24-26. [8] Morgan, J. A. Robinson, E. Y., A Long Shot for Satellite Launch, Aerospace America, (Apr.,1998), p.32-39. [9] Bokulich, F., Space Technology - Boeing Moves Forward with Its EELV, SAE Aerospace Engineering, (Apr., 1999), p.23. [10] David, L., Incredible Shrinking Spacecraft, Aeroapace America, (Jan., 1996), p.20-24. [11] Ashley. S., Bringing Launch Costs Down to Earth, Mechanical Engineering Vol.120, No.10, (1998), p.62-68. [12] Mankins, J. C., Lower Costs for Highly Reusable Space Vehicles, Aeroapace America, (March, 1998), p.36-42. [13] Tsien H. S. and Evens, R. C., Optimal Thrust Programming for a Sounding Rocket, Journal of the American Rocket Society, Vol.21, No.5, (1951), p.635-643. [14] King, M. K., Rocket Propulsion Strategy Based on Kinetic Energy Management, Journal of Propulsion and Power, Vol.14, No.2, (1998), p.270-272. [15] Sparenberg, J. A., Hydrodynamic Propulsion and Its Optimization, (1995), Kluwer Academic Publishers, Boston. [16] Powel, S. F., IV, On the Leading Edge: Combining Maturity and Advanced Technology on the F404 Turbofan Engine, ASME Journal of Engineering for Gas Turbines and Power, Vol.113, No.1, (1991), p.1-10. [17] Lane, R. J. and Behenna, J., EJ2000- The Engine for the New European Fighter, ASME Journal of Engineering for Gas Turbines and Power, Vol.113, No.1, (1991), p.25-32. [18] Lee, H. J. and Lee, H. W., "Deriving the Generalized Rocket Kinetic Power Equations and Associated Propulsion Indexes", JSME International Journal, Vol.42, No.1, 1999, pp.127-136. [19] Jhang, J. S., "MATLAB program design and application", CWEB Technology, Inc., Hsinchu, 2000. [20] Hong, W. Y., "MATLAB 7 program design", Flag Publishing, Taipei, 2005. [21] Yuan, K. L., Lee, H. J. and Lin, H, "Propulsion Superiority Analysis of U-turn Launch Mode for Satellite Rocket", Transactions of the Japan Society for Aeronautical and Space Sciences, Vol.51, No.171, May, 2008, pp.52-60. [22] Sie, S. H., "Space tourism", Flag Publishing, Taipei, 1991.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2002-
dc.description.abstract傳統上噴射推進系統之動力功率和效率公式均以粗略、不完整、且不一致的方式呈現,使研究設計人員無法清楚瞭解各推進參數及其影響之相關性。有時在某種情況下還可能導致如本文所述推進性能降低與推進效率不彰的問題。因此我們將試圖澄清一些相關的重要概念,並嚴謹地推導出含完整物理參數之通化方程式,以追求系統更佳的推進性能表現。藉由高效率交織運輸法(interweaved transport scheme)與追蹤雷諾輸送公式(LRTE),我們成功地推導出噴射推進系統之相關方程式:如動力方程式、通化總動力功率(TKP)、通化推進功率(TP)、通化可供應推進功率(APP)及相關通化推進效率等公式,此外並考慮這些公式於不同特殊條件下之運用。為充分利用上述的推進理論,我們列舉了一些創新的推進策略如火箭U迴發射模式等。在本文中,將以木頭火箭說明該發射模式之優越性,並證明此法可將總動力功率及重力位能轉換為火箭推進動能,因此深具未來大幅提昇衛星發射火箭推進效率之潛力。zh_TW
dc.description.abstractThe kinetic power and efficiency equations for general jet propulsion systems are classically given in a much cursory, incomplete, and ununified format. This situation prohibits the propulsion designer from seeing the panorama of interrelated propulsion parameters and effects. And in some cases, it may lead to an energy-inefficient propulsion system design, or induce significant offset in propulsion performance as demonstrated in this study. Thus, herein we attempt to clarify some related concepts and to rigorously derive the associated generalized equations with a complete spectrum of physical parameters to be manipulated in quest of better performance. By a highly efficient interweaved transport scheme, we have derived the following equations for general jet propulsion systems: i.e., generalized total kinetic power (TKP) 1,2), generalized thrust power (TP), generalized available propulsion power (APP), and relevant generalized propulsive efficiency equation. Further, the variants of these equations under special conditions are also considered. For taking advantage of above propulsion theories, we also illustrate some novel propulsion strategies such as U-turn launch mode1). In this study, the wood rocket model is used to explain how to improve the propulsive efficiency of a rocket. We prove that the novel U-turn launch mode can convert total kinetic power and gravitational potential energy into rocket propulsive power and thus has the potential to dramatically improve the propulsive efficiency of satellite launch rocket.en_US
dc.description.tableofcontentsABSTRACT III TABLE OF CONTENTS IV LIST OF FIGURES VI Chapter 1. Introduction 1 Chapter 2. Derivation of propulsive power equations 5 2.1 Lagrangian Reynolds transport equation 5 2.2 The generalized momentum equation for jet propulsion system 6 2.3 Generalized total kinetic power for jet propulsion system 8 2.4 Generalized propulsive efficiency for JPS 10 Chapter 3. Propulsion analysis of the wood rocket 13 3.1. Verification of generalized total kinetic power of wood rocket 13 3.2. Energy analysis of spring /mass system 15 3.3. Energy analysis of spring /mass system motion 17 3.4. Relation between spring k value and obtained energy 19 3.5. Efficiency analysis of wood rocket system 23 3.6. Propulsive efficiency analysis of rocket in U-turn launch mode 31 Chapter 4. Numerical simulation of rocket propulsion superiority with U-turn launch mode 36 4.1. Enumeration of relevant equation 36 4.2. Relevant data for Saturn V rocket 37 4.3. Matlab simulation results 38 Chapter 5. Conclusion 40 Reference 42en_US
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808200814404400en_US
dc.subject噴射推進系統zh_TW
dc.subjectJet Propulsion Systemsen_US
dc.subject通化總動力功率zh_TW
dc.subject通化推進功率zh_TW
dc.subject通化可供應推進功率zh_TW
dc.subject火箭zh_TW
dc.subjectU型發射模式zh_TW
dc.subject推進效率zh_TW
dc.subjectGeneralized Total Kinetic Poweren_US
dc.subjectGeneralized Thrust Poweren_US
dc.subjectGeneralized Available Propulsion Poweren_US
dc.subjectRocketen_US
dc.subjectU-turn Launch Modeen_US
dc.subjectPropulsive Efficiencyen_US
dc.title衛星運載火箭之通化推進性能分析zh_TW
dc.titleGeneralized Propulsion Performance Analysis of Satellite Rocketen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.