Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20096
標題: 53BP1在非小細胞肺癌中之表現型式
Expression Profile of 53BP1 in Non-Small Cell Lung Cancer
作者: 鄭佳曄
Cheng, Chia-Yeh
關鍵字: DNA damage response;DNA損傷反應;double-strand breaks;53BP1;non-small cell lung cancer;雙股螺旋斷裂;53BP1;非小細胞肺癌
出版社: 生物醫學研究所
引用: Adams MM, Wang B, Xia Z, Morales JC, Lu X, Donehower LA, Bochar DA, Elledge SJ, Carpenter PB. (2005) 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle 4, 1854-1861. Alberg AJ, Samet JM. (2003) Epidemiology of lung cancer. Chest. 123 (suppl 1), 21S-49S. Anderson L, Henderson C, Adachi Y. (2001) Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 21, 1719-1729. Baer R, Ludwig T. (2002) The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr. Opin. Genet. Dev. 12, 86-91. Bakkenist CJ, Kastan MB. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimmer dissociation. Nature 421, 499-506. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J. (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW. (2002) Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. U S A 99, 8173-8178. Bekker-Jensen S, Lukas C, Melander F, Bartek J, Lukas J. (2005) Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol. 170, 201-211. Boisvert FM, Cote J, Boulanger MC, Richard S. (2003) A proteomic analysis of arginine-methylated protein complexes. Mol. Cell Proteomics 2, 1319-13130. Boisvert FM, Rhie A, Richard S, Doherty AJ. (2005) The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4, 1834-1841. Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV. (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68-76. Brabec V, Kasparkova J. (2005) Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist. Updat. 8, 131-146. Brummelkamp TR, Fabius AW, Mullenders J, Madiredjo M, Velds A, Kerkhoven RM, Bernards R, Beijersbergen RL. (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2, 202-206. Callebaut I, Mornon JP. (1997) From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25-30. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677-1679. Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. (2003) The Mre11 complex is required for ATM activation and G2/M checkpoint. EMBO J. 22, 6610-6620. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A. (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5, 675-679. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A. (2002) Genomic instability in mice lacking histone H2AX. Science 2, 922-927. Charier G, Couprie J, Alpha-Bazin B, Meyer V, Quemeneur E, Guerois R, Callebaut I, Gilquin B, Zinn-Justin S. (2004) The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure 12, 1551-1562. Comis RL, Friedland DM, Good BC. (1998) Small-cell lung cancer: a perspective on the past and a preview of the future. Oncology (Williston Park) 12 (1 Suppl 2), 44-50. Craig JM, Earnshaw WC, Vagnarelli P. (1999) Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exp. Cell Res. 246, 249-62. De Vos M, Hayward BE, Charlton R, Taylor GR, Glaser AW, Picton S, Cole TR, Maher ER, McKeown CM, Mann JR, Yates JR, Baralle D, Rankin J, Bonthron DT, Sheridan E. (2006) PMS2 mutations in childhood cancer. J. Natl. Cancer Inst. 98, 358-361. Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ. (2002) Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21, 3863-72. Devoy A, Soane T, Welchman R, Mayer RJ. (2005) The ubiquitin-proteasome system and cancer. Essays Biochem. 41, 187-203. DiTullio RA Jr, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J, Halazonetis TD. (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat. Cell Biol. 4, 998-1002. Doll R, Hill AB. (1950) Smoking and carcinoma of the lung: preliminary report. Br. Med. J. 2, 739-748. Dulic A, Bates PA, Zhang X, Martin SR, Freemont PS, Lindahl T, Barnes DE. (2001) BRCT domain interactions in the heterodimeric DNA repair protein XRCC1-DNA ligase III. Biochemistry 40, 5906-13. Dutta A, Ruppert JM, Aster JC, Winchester E. (1993) Inhibition of DNA replication factor RPA by p53. Nature 365, 79-82. Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, St Clair D, Prince JA, Brookes AJ. (2001) SNP association studies in Alzheimer''s disease highlight problems for complex disease analysis. Trends Genet. 17, 407-413. Emili A. (1998) MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183-189. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A. (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol. 4, 993-997. Fiscella M, Ullrich SJ, Zambrano N, Shields MT, Lin D, Lees-Miller SP, Anderson CW, Mercer WE, Appella E. (1993) Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8, 1519-1528. Frank B, Hemminki K, Bermejo JL, Klaes R, Bugert P, Wappenschmidt B, Schmutzler RK, Burwinkel B. (2005) TP53-binding protein variants and breast cancer risk: a case-control study. Breast Cancer Res. 7, R502-505. Fraumeni JF Jr. (1975) Respiratory carcinogenesis: an epidemiologic appraisal. J Natl. Cancer Inst. 55, 1039-1046. Gasser S, Orsulic S, Brown EJ, Raulet DH. (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186-1190. Gilbert CS, Green CM, Lowndes NF. (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8, 129-136. Gill G. (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046-2059. Glade MJ. (1999) Food, nutrition, and the prevention of cancer: a global perspective, American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 15, 523-526. Goldberg M, Stucki M, Falck J, D''Amours D, Rahman D, Pappin D, Bartek J, Jackson SP. (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421, 952-956. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD. (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913. Gottesman MM, Fojo T, Bates SE. (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48-58. Hainaut P, Soussi T, Shomer B, Hollstein M, Greenblatt M, Hovig E, Harris CC, Montesano R. (1997) Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 25, 151-157. Han J, Colditz GA, Liu JS, Hunter DJ. (2005) Genetic variation in XPD, sun exposure, and risk of skin cancer. Cancer Epidemiol. Biomarkers Prev. 14, 1539-1544. Hicke L. (2001) Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2, 195-201. Hoeijmakers JH. (2001) Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D''Andrea AD. (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606-609. Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD. (2001) Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 22, 917-922. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406-411. Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. (1994) Two cellular protein that bind to wild-type p53 but not mutant p53. Proc. Natl. Acad. Sci. USA 91, 6098-6102. Iwabuchi K, Basu BP, Kysela B, Kurihara T, Shibata M, Guan D, Cao Y, Hamada T, Imamura K, Jeggo PA, Date T, Doherty AJ. (2003) Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem. 278 36487-36495. Iwabuchi K, Li B, Massa HF, Trask BJ, Date T, Fields S. (1998) Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J. Biol. Chem. 273, 26061-26068. Iwakuma T, Lozano G, Flores ER. (2005) Li-Fraumeni syndrome: a p53 family affair. Cell cycle 4, 865-867. Janerich DT, Thompson WD, Varela LR, Greenwald P, Chorost S, Tucci C, Zaman MB, Melamed MR, Kiely M, McKneally MF. (1990) Lung cancer and exposure to tobacco smoke in the household. N. Engl. J. Med. 323, 632-636. Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP. (2002) Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev. 16, 583-93. Jordan P, Carmo-Fonseca M. (1998) Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res. 26, 2831-2836. Jullien D, Vagnarelli P, Earnshaw WC, Adachi Y. (2002) Kinetochore localisation of the DNA damage response component 53BP1 during mitosis. J Cell Sci. 115, 71-79. Ko YC, Lee CH, Chen MJ, Huang CC, Chang WY, Lin HJ, Wang HZ, Chang PY. (1997) Risk factors for primary lung cancer among non-smoking women in Taiwan. Int. J. Epidemiol. 26, 24-31. Koonin EV, Altschul SF, Bork P. (1996) BRCA1 protein products ... Functional motifs... . Nat. Genet. 13, 266-268. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN. (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048-33053. Lane DP, Crawford LV. (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261-263. Levine AJ. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323-331. Li R, Botchan MR. (1993) The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73, 1207-1221. Linzer DI, Levine AJ. (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43-52. Lutzker SG, Levine AJ. (1996) A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nat. Med. 2, 804-810. Ma H, Hu Z, Zhai X, Wang S, Wang X, Qin J, Chen W, Jin G, Liu J, Gao J, Wang X, Wei Q, Shen H. (2005) Joint effects of single nucleotide polymorphisms in P53BP1 and p53 on breast cancer risk in a Chinese population. Carcinogenesis 27, 766-771. Mack DH, Vartikar J, Pipas JM, Laimins LA. (1993) Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363, 281-283. Manis JP, Morales JC, Xia Z, Kutok JL, Alt FW, Carpenter PB. (2004) 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat. Immunol. 5, 481-487. Manke IA, Lowery DM, Nguyen A, Yaffe MB. (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636-639. Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP. (2003) The Tudor domain ''Royal Family'': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci. 28, 69-74. Melo JA, Cohen J, Toczyski DP. (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809-2821. Michor F, Nowak MA, Iwasa Y. (2006) Evolution of resistance to cancer therapy. Curr Pharm Des. 12, 261-71. Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD. (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 63, 8585-8591. Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD. (2004) 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst). 3, 945-952. Morales JC, Xia Z, Lu T, Aldrich MB, Wang B, Rosales C, Kellems RE, Hittelman WN, Elledge SJ, Carpenter PB. (2003) Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J. Biol. Chem. 278, 14971-14977. Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH. (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590-592. Niida H, Nakanishi M. (2006) DNA damage checkpoints in mammals. Mutagenesis 21, 3-9. O''Driscoll M, Jeggo PA. (2006) The role of double-strand break repair - insights from human genetics. Nat Rev Genet. 7, 45-54. Parkin DM, Bray F, Ferlay J, Pisani P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74-108. Perez RP. (1998) Cellular and molecular determinants of cisplatin resistance. Eur. J. Cancer 34, 1535-1542. Perkins EJ, Nair A, Cowley DO, Van Dyke T, Chang Y, Ramsden DA. (2002) Sensing of intermediates in V(D)J recombination by ATM. Genes Dev. 16, 159-164. Ponting CP. (1997) Tudor domains in proteins that interact with RNA. Trends Biochem. Sci. 22, 51-52. Pryde F, Khalili S, Robertson K, Selfridge J, Ritchie AM, Melton DW, Jullien D, Adachi Y. (2005) 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J. Cell Sci. 118, 2043-2055. Rappold I, Iwabuchi K, Date T, Chen J. (2001) Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell. Biol. 153, 613-620. Rogakou EP, Boon C, Redon C, Bonner WM. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905-916. Saar K, Chrzanowska KH, Stumm M, Jung M, Nurnberg G, Wienker TF, Seemanova E, Wegner RD, Reis A, Sperling K. (1997) The gene for ataxia- telangiectasia variant, Nijmegen breakage syndrome, maps to 1-cM interval on chromosome 8q21. Am. J. Hum. Genet. 60, 605-610. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. (2000) p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol. 151, 1381-1390. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 6, 168-170. Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T. (1992) Wild-type p53 binds to the TATA-binding protein and repress transcription. Proc. Natl. Acad. Sci. USA 89, 12028-12032. Shastry BS. (2002) SNP alleles in human disease and evolution. J. Hum. Genet. 47, 561-6. Shieh SY, Taya Y, Prives C. (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18, 1815-1823. Siddik ZH. (2002) Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat Res. 112, 263-84. Sprangers R, Groves MR, Sinning I, Sattler M. (2003) High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507-520. Starita LM, Parvin JD. (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr. Opin. Cell Biol. 15, 345-350. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421, 961-966. Stucki M, Jackson SP. (2004) Tudor domains track down DNA breaks. Nat Cell Biol. 6, 1150-1152. Sun Z, Hsiao J, Fay DS, Stern DF. (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272-274. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5, 219-234. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612-5621. Vousden KH, Lu X. (2002) Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604. Wang B, Matsuoka S, Carpenter PB, Elledge SJ. (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435-1438. Ward IM, Minn K, van Deursen J, Chen J. (2003) p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell Biol. 23, 2556-2563. Ward IM, Reina-San-Martin B, Olaru A, Minn K, Tamada K, Lau JS, Cascalho M, Chen L, Nussenzweig A, Livak F, Nussenzweig MC, Chen J. (2004) 53BP1 is required for class switch recombination. J. Cell Biol. 165, 459-64. Weinert TA, Hartwell LH. (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317-322. Xia Z, Morales JC, Dunphy WG, Carpenter PB. (2001) Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J. Biol. Chem. 276, 2708-2718. Xu Y. (2006) DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat. Rev. Immunol. 6, 261-270. Yu X, Chini CC, He M, Mer G, Chen J. (2003) The BRCT domain is a phospho-protein binding domain. Science. 302, 639-42. Zgheib O, Huyen Y, DiTullio RA Jr, Snyder A, Venere M, Stavridi ES, Halazonetis TD. (2005) ATM signaling and 53BP1. Radiother Oncol. 76, 119-122. Zou L, Elledge SJ. (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542-1548.
摘要: 
The p53 binding protein 1 (53BP1) is a highly conserved DNA damage checkpoint protein in all eukaryotes. 53BP1 contains two BRCT domains, which are present in several proteins involved in DNA repair and DNA damage-signaling pathways. Upon DNA damage, 53BP1 rapidly relocalized to DNA double-strand breaks and forms discrete nuclear foci. It has been shown that 53BP1 is required for DNA damage checkpoint protein activation and tumor suppression. 53BP1 facilitates the end-joining repair and class-switch repair processes. Impaired function of DNA damage response gives rise to chromosomal instability that can result in tumorigenesis. Although the mechanism of 53BP1 has been proposed to prevent genomic instability and tumorigenesis, the detail is still unclear.
Our results showed that 53BP1 mRNA expression is nearly the same in 6 lung cancer cell lines. By western blot analysis, 53BP1 was expressed in 7 lung cancer cell lines. About 60-70% lung cancer tissue specimens expressed 53BP1 mRNA and protein. Interestingly, a high molecular weight protein-53BP1'' was highly expressed in H226 and MCF-7 cell lines. Furthermore, expression of 53BP1'' was markedly increased than 53BP1 after cisplatin treatment. Hence, our results suggest that the different forms of 53BP1 contain distinct biological significance and may play diverse role in tumorigenesis.

在真核生物中,p53 binding protein 1 (53BP1)是高保留性的DNA損傷監控系統蛋白質。53BP1具有兩個BRCT domains,許多參與DNA修復和DNA損傷訊息傳遞的蛋白質也都具有此功能性區域。發生DNA損傷後,53BP1會快速地移動到DNA雙股螺旋斷裂位置並形成明顯清晰的核焦點。53BP1對於啟動DNA損傷監控蛋白的活化和抑制癌化而言是相當重要的。53BP1有利於末端接合修復和重鏈基因轉換重組的進行。目前的研究推論53BP1有助於遏止基因的不穩定性,然而仍不清楚53BP1的作用機制。
在我們的研究中,53BP1 mRNA於6株肺癌細胞株中表現量差不多。Western Blot分析顯示7株肺癌細胞株都會表現53BP1。臨床分析上,大約60-70%肺癌病人會表現53BP1。值得一提的是,分子量較高的53BP1''在H226、MCF-7中表現量特別高。此外,經cisplatin處理後,53BP1''的表現量差異比53BP1顯著。因此,我們推論不同型式的53BP1具有不同的生物意義並且於癌化過程中扮演不同的角色。
URI: http://hdl.handle.net/11455/20096
其他識別: U0005-0708200618263500
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.