Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20115
標題: 星天牛(Anoplophora malasiaca)新型纖維酵素之選殖、桿狀病毒系統表達及其活性分析
Molecular Cloning, Baculovirus Expression, and Characterization of Novel Cellulases Isolated from White Spotted Longicorn Beetle, Anoplophora malasiaca
作者: 呂尚潔
Lu, Shang-Chieh
關鍵字: 纖維酵素;cellulase;星天牛;桿狀病毒;cDNA library;Anoplophora malasiaca;glycoside hydrolase family(GHF);baculovirus
出版社: 生物醫學研究所
引用: Bayer, E. A., Chanzy, H., Lamed, R., and Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8, 548-557. Bayer, E. A., Lamed, R., and Himmel, M. E. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18, 237-245. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnol Adv 18, 355-383. Bhat, M. K., and Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15, 583-620. Bisaria, V. S., and Mishra, S. (1989). Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol 9, 61-103. Blissard, G. W., and Rohrmann, G. F. (1990). Baculovirus diversity and molecular biology. Annu Rev Entomol 35, 127-155. Davies, G. J., Dodson, G. G., Hubbard, R. E., Tolley, S. P., Dauter, Z., Wilson, K. S., Hjort, C., Mikkelsen, J. M., Rasmussen, G., and Schulein, M. (1993). Structure and function of endoglucanase V. Nature 365, 362-364. Dominguez, R., Souchon, H., Lascombe, M., and Alzari, P. M. (1996). The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J Mol Biol 257, 1042-1051. Girard, C., and Jouanin, L. (1999). Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem Mol Biol 29, 1129-1142. Hasemann, C. A., and Capra, J. D. (1990). High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proc Natl Acad Sci U S A 87, 3942-3946. Helenius, A., and Aebi, M. (2001). Intracellular functions of N-linked glycans. Science 291, 2364-2369. Henrissat, B., and Bairoch, A. (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316 (Pt 2), 695-696. Hu, John A. Heitmann, and Orlando J. Rojas. (2008). Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources 3, 270-294. Huh, N. E., and Weaver, R. F. (1990). Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus. J Gen Virol 71, 195-201. Ishizue Adachi. (1994). Development and life cycle of Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidase) on Citrus Trees under Fluctuating and constant temperature regimes. Appl Entomol Zool 29, 485-479. Jiang, S. S., Chang, I. S., Huang, L. W., Chen, P. C., Wen, C. C., Liu, S. C., Chien, L. C., Lin, C. Y., Hsiung, C. A., and Juang, J. L. (2006). Temporal transcription program of recombinant Autographa californica multiple nucleopolyhedrosis virus. J Virol 80, 8989-8999. Kim, K. H., Tucker, M. P., and Nguyen, Q. A. (2002). Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog 18, 489-494. Kim, N., Choo, Y. M., Lee, K. S., Hong, S. J., Seol, K. Y., Je, Y. H., Sohn, H. D., and Jin, B. R. (2008). Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B Biochem Mol Biol 150, 368-376. Kleman-Leyer, K. M., Siika-Aho, M., Teeri, T. T., and Kirk, T. K. (1996). The Cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei Act Synergistically To Solubilize Native Cotton Cellulose but Not To Decrease Its Molecular Size. Appl Environ Microbiol 62, 2883-2887. Kontturi, E., Tammelin, T., and Osterberg, M. (2006). Cellulose--model films and the fundamental approach. Chem Soc Rev 35, 1287-1304. Lee, S. J., Kim, S. R., Yoon, H. J., Kim, I., Lee, K. S., Je, Y. H., Lee, S. M., Seo, S. J., Dae Sohn, H., and Jin, B. R. (2004). cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 139, 107-116. Lee, S. J., Lee, K. S., Kim, S. R., Gui, Z. Z., Kim, Y. S., Yoon, H. J., Kim, I., Kang, P. D., Sohn, H. D., and Jin, B. R. (2005). A novel cellulase gene from the mulberry longicorn beetle, Apriona germari: gene structure, expression, and enzymatic activity. Comp Biochem Physiol B Biochem Mol Biol 140, 551-560. Lu, Q. (2005). Seamless cloning and gene fusion. Trends Biotechnol 23, 199-207. Miller, G.L., (1995). Use of the dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem 31, 426-428. Percival Zhang, Y. H., Himmel, M. E., and Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24, 452-481. Peters, D. (2006). Carbohydrates for fermentation. Biotechnol J 1, 806-814. Rohel, D. Z., and Faulkner, P. (1984). Time Course Analysis and Mapping of Autographa californica Nuclear Polyhedrosis Virus Transcripts. J Virol 50, 739-747. Rohrmann, G. F. (1992). Baculovirus structural proteins. J Gen Virol 73 (Pt 4), 749-761. Schulein, M. (2000). Protein engineering of cellulases. Biochim Biophys Acta 1543, 239-252. Slack, J., and Arif, B. M. (2007). The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69, 99-165. Smant, G., Stokkermans, J. P., Yan, Y., de Boer, J. M., Baum, T. J., Wang, X., Hussey, R. S., Gommers, F. J., Henrissat, B., Davis, E. L., et al. (1998). Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95, 4906-4911. Smith, G. E., Summers, M. D., and Fraser, M. J. (1983). Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3, 2156-2165. Srisodsuk, M., Kleman-Leyer, K., Keranen, S., Kirk, T. K., and Teeri, T. T. (1998). Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. Eur J Biochem 251, 885-892. Sugimura, M., Watanabe, H., Lo, N., and Saito, H. (2003). Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270, 3455-3460. Summers, M. D., and Volkman, L. E. (1976). Comparison of biophysical and morphological properties of occluded and extracellular nonoccluded baculovirus from in vivo and in vitro host systems. J Virol 17, 962-972. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., and Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100, 637-643. Tomalski, M. D., Wu, J. G., and Miller, L. K. (1988). The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167, 591-600. Tomme, P., Warren, R. A., and Gilkes, N. R. (1995). Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37, 1-81. WEYER, U., Knight, S., and Robert D. P. (1990). Analysis of very late gene expression by Autographa californica nuclearpolyhedrosis virus and the further development of multiple expression vectors. Journal of General Virology 71, 1525-1534. Wang, Y., Kleespies, R. G., Huger, A. M., and Jehle, J. A. (2007). The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects. J Virol 81, 5395-5406. Watanabe, H., Noda, H., Tokuda, G., and Lo, N. (1998). A cellulase gene of termite origin. Nature 394, 330-331. Watanabe, H., Tokuda G. (2001). Animal cellulases. Cell Mol Life Sci, 58, 1167-178. Wei, Y. D., Lee, K. S., Gui, Z. Z., Yoon, H. J., Kim, I., Zhang, G. Z., Guo, X., Sohn, H. D., and Jin, B. R. (2006). Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 145, 220-229. Wilson, M. E., and Price, K. H. (1988). Association of Autographa californica nuclear polyhedrosis virus (AcMNPV) with the nuclear matrix. Virology 167, 233-241. Zhang, Y. H., and Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88, 797-824. Zhang, Y. H., and Lynd, L. R. (2006). A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94, 888-898.
摘要: 
Cellulose is the most abundant nature resource for the generation of bio-energy. Although numerous cellulases have been discovered and characterized from microbes, such as bacteria and fungi, only very few of them were isolated from higher animals. Insects are a group of high efficient cellulose consumers, and we have cloned three novel endogenous cellulases, Am-EGase 1, 2, and 3 from longicorn, Anoplophora malasiaca, with low general sequence homology with other known cellulases. Am-EGase 1 encodes 239 aa residues and sequence alignment of this gene showed a 75.7 % identity to cellulase of another longicorn, Apriona germari, which belongs to the glycosyl hydrolase families (GHF) 45. The Am-EGase 2 gene encodes 284 aa residues and Am-EGase 3 gene encodes 329 aa residues. Both genes exhibit sequence similarity with the cellulase isolated from Psacothea hilaris which belongs to GHF 5; the first one showed a 80.4 % identity and the other showed only 58.3 % identity. Through assays of these newly-identified cellulases using baculovirus expression system, the unique functions of these three novel cellulase genes were characterized. Our results also showed that the silkworm can be used as a very cheap and efficient bio-reactor to replace the conventional expensive cell cultural fermenters for the production of these valuable enzymes for future practical applications. Since the use of cellulose does not consume for food sources, the isolation of new insect cellulolytic enzyme genes will be significant for the bio-renewable energy research using rice straw or wood chips for our bright future.
URI: http://hdl.handle.net/11455/20115
其他識別: U0005-1208200815511500
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.