Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20119
標題: 探討奈米二氧化鈦對哺乳動物細胞的細胞生長與分裂之影響
The Effect of TiO2 Nanoparticles on Mammalian Cell Proliferation and Cytokinesis
作者: 黃馨
Huang, Shing
關鍵字: TiO2 Nanoparticles;奈米二氧化鈦;Proliferation;Cytokinesis;細胞增生;細胞分裂
出版社: 生物醫學研究所
引用: 1. Afri, M., Frimer, A. A., and Cohen, Y. (2004). Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2'',7''-dichlorofluorescein (DCF), 2'',7''-dichlorodihydrofluorescein (DCFH) and 2'',7''-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids. Vol:123-133. 2. Baan, R. A. (2007). Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group. Inhal Toxicol. Vol:213-228. 3. Bartek, J., Lukas, C., and Lukas, J. (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol. Vol:792-804. 4. Behrend, L., Henderson, G., and Zwacka, R. M. (2003). Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. Vol:1441-1444. 5. Bermudez, E., Mangum, J. B., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B., and Everitt, J. I. (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. Vol:347-357. 6. Borm, P. J., Schins, R. P., and Albrecht, C. (2004). Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer. Vol:3-14. 7. Braydich-Stolle, L., Hussain, S., Schlager, J. J., and Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. Vol:412-419. 8. Caldwell, C. M., Green, R. A., and Kaplan, K. B. (2007). APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol. Vol:1109-1120. 9. Carmena, M. and Earnshaw, W. C. (2003). The cellular geography of aurora kinases. Nat Rev Mol Cell Biol. Vol:842-854. 10. Cha, M. H., Rhim, T., Kim, K. H., Jang, A. S., Paik, Y. K., and Park, C. S. (2007). Proteomic identification of macrophage migration-inhibitory factor upon exposure to TiO2 particles. Mol Cell Proteomics. Vol:56-63. 11. Chen, H. W., Su, S. F., Chien, C. T., Lin, W. H., Yu, S. L., Chou, C. C., Chen, J. J., and Yang, P. C. (2006). Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. Faseb J. Vol:2393-2395. 12. Chi, Y. H. and Jeang, K. T. (2007). Aneuploidy and cancer. J Cell Biochem. Vol:531-538. 13. Cully, M., You, H., Levine, A. J., and Mak, T. W. (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. Vol:184-192. 14. Cuomo, M. E., Knebel, A., Morrice, N., Paterson, H., Cohen, P., and Mittnacht, S. (2008). p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nat Cell Biol. Vol:723-730. 15. Donzelli, M. and Draetta, G. F. (2003). Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. Vol:671-677. 16. Doxsey, S., Zimmerman, W., and Mikule, K. (2005). Centrosome control of the cell cycle. Trends Cell Biol. Vol:303-311. 17. Fenech, M. and Crott, J. W. (2002). Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes-evidence for breakage-fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat Res. Vol:131-136. 18. Fukasawa, K. (2007). Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer. Vol:911-924. 19. Ganem, N. J. and Pellman, D. (2007). Limiting the proliferation of polyploid cells. Cell. Vol:437-440. 20. Geiser, M., Schurch, S., and Gehr, P. (2003). Influence of surface chemistry and topography of particles on their immersion into the lung''s surface-lining layer. J Appl Physiol. Vol:1793-1801. 21. Green, R. A., Wollman, R., and Kaplan, K. B. (2005). APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell. Vol:4609-4622. 22. Guo, W. and Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. Vol:816-826. 23. Gurr, J. R., Wang, A. S., Chen, C. H., and Jan, K. Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. Vol:66-73. 24. Hindley, A. and Kolch, W. (2002). Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci. Vol:1575-1581. 25. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., and Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. Vol:975-983. 26. Ichinose, S., Muneta, T., Sekiya, I., Itoh, S., Aoki, H., and Tagami, M. (2003). The study of metal ion release and cytotoxicity in Co-Cr-Mo and Ti-Al-V alloy in total knee prosthesis - scanning electron microscopic observation. J Mater Sci Mater Med. Vol:79-86. 27. Jelluma, N., Brenkman, A. B., van den Broek, N. J., Cruijsen, C. W., van Osch, M. H., Lens, S. M., Medema, R. H., and Kops, G. J. (2008). Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell. Vol:233-246. 28. Kang, J. L., Moon, C., Lee, H. S., Lee, H. W., Park, E. M., Kim, H. S., and Castranova, V. (2008). Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health A. Vol:478-485. 29. Kang, Y. H., Park, J. E., Yu, L. R., Soung, N. K., Yun, S. M., Bang, J. K., Seong, Y. S., Yu, H., Garfield, S., Veenstra, T. D., and Lee, K. S. (2006). Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol Cell. Vol:409-422. 30. Kops, G. J., Weaver, B. A., and Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. Vol:773-785. 31. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature. Vol:643-649. 32. Moghimi, S. M. and Agrawal, A. (2005). Lipid-based nanosystems and complexes in experimental and clinical therapeutics. Curr Drug Deliv. Vol:295. 33. Moghimi, S. M., Hunter, A. C., and Murray, J. C. (2005). Nanomedicine: current status and future prospects. Faseb J. Vol:311-330. 34. Nguyen, D. X. and Massague, J. (2007). Genetic determinants of cancer metastasis. Nat Rev Genet. Vol:341-352. 35. Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer. Vol:815-825. 36. Nohynek, G. J., Lademann, J., Ribaud, C., and Roberts, M. S. (2007). Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. Vol:251-277. 37. Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H. (2005a). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. Vol:8. 38. Oberdorster, G., Oberdorster, E., and Oberdorster, J. (2005b). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. Vol:823-839. 39. Park, S., Lee, Y. K., Jung, M., Kim, K. H., Chung, N., Ahn, E. K., Lim, Y., and Lee, K. H. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol. Vol:59-65. 40. Peters, K., Unger, R. E., Kirkpatrick, C. J., Gatti, A. M., and Monari, E. (2004). Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med. Vol:321-325. 41. Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D. G., and Schiffmann, D. (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect. Vol:797-800. 42. Ruchaud, S., Carmena, M., and Earnshaw, W. C. (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol. Vol:798-812. 43. Sanvicens, N. and Marco, M. P. (2008). Multifunctional nanoparticles - properties and prospects for their use in human medicine. Trends Biotechnol. 44. Shibuya, M. (2006). Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. Vol:225-230; discussion 231. 45. Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. Vol:155-168. 46. Storchova, Z. and Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. Vol:45-54. 47. Talos, F., Nemajerova, A., Flores, E. R., Petrenko, O., and Moll, U. M. (2007). p73 suppresses polyploidy and aneuploidy in the absence of functional p53. Mol Cell. Vol:647-659. 48. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. Vol:442-454. 49. Veranth, J. M., Kaser, E. G., Veranth, M. M., Koch, M., and Yost, G. S. (2007). Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol. Vol:2. 50. Vivanco, I., and Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. Vol:489-501. 51. Wang, J. J., Sanderson, B. J., and Wang, H. (2007). Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res. Vol:99-106. 52. Warheit, D. B., Brock, W. J., Lee, K. P., Webb, T. R., and Reed, K. L. (2005). Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci. Vol:514-524. 53. Weaver, B. A. and Cleveland, D. W. (2006). Does aneuploidy cause cancer? Curr Opin Cell Biol. Vol:658-667. 54. Yih, L. H., Hsueh, S. W., Luu, W. S., Chiu, T. H., and Lee, T. C. (2005). Arsenite induces prominent mitotic arrest via inhibition of G2 checkpoint activation in CGL-2 cells. Carcinogenesis. Vol:53-63. 55. Yih, L. H. and Lee, T. C. (2003). Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts. Cancer Res. Vol:6680-6688. 56. Yih, L. H., Tseng, Y. Y., Wu, Y. C., and Lee, T. C. (2006). Induction of centrosome amplification during arsenite-induced mitotic arrest in CGL-2 cells. Cancer Res. Vol:2098-2106. 57. Yuen, K. W., and Desai, A. (2008). The wages of CIN. J Cell Biol. Vol:661-663
摘要: 
因為較低的細胞毒性,使得奈米二氧化鈦廣泛的應用在清潔劑、化妝品、油漆及生醫材料等。然而,研究發現,奈米二氧化鈦抑制人類B淋巴細胞和敘利亞大鼠胚胎細胞的存活,並導致細胞微核和細胞核質橋,進而產生細胞凋亡現象。另一方面,文獻也指出,短時間暴露在奈米二氧化鈦環境下的小鼠或大鼠,一週內即可在小鼠的肺組織中發現奈米二氧化鈦的殘留,並有細胞增生的現象;而至少兩年的長時間暴露則會導致大鼠有鱗狀上皮細胞癌和支氣管肺泡癌的發生。這樣不同的結果,使得我們想要進一步瞭解,在細胞中加入奈米二氧化鈦,並處理不同的時間,對於細胞株的影響及其分子機制探討。
在我們的研究中,細胞以不同濃度的奈米二氧化鈦短時間處理後,MTT實驗中發現老鼠纖維母細胞和人類纖維母細胞的存活率上升;在臺昐藍細胞存活率試驗和細胞聚落形成分析實驗中,細胞有增生的現象。我們也觀察到奈米二氧化鈦之處理會增加ROS產生量;並由西方點墨轉漬分析法中也看到ERK的活化。因此可以確定,在我們的系統下,短時間處理奈米二氧化鈦會導致ROS上升及ERK活化,進而導致細胞的增生。
我們進一步探討奈米二氧化鈦的長期暴露對細胞的影響,首先以濃度10 μg/mL的奈米二氧化鈦處理老鼠纖維母細胞數週,發現細胞的大小及型態有明顯的改變;並有微核、雙核、多核的細胞產生;在軟瓊脂群落鑑定技術中,也發現隨著暴露時間的增長,細胞在軟瓊脂膠中形成的群落數也越多,表示細胞轉型能力增強。另一方面,我們也發現長期暴露在奈米二氧化鈦的細胞,細胞有分裂異常及染色體排列錯誤等現象。因此我們推測,長期暴露在奈米二氧化鈦下會導致基因不穩定、細胞分裂異常,而使細胞有微核、雙核、多核產生的現象,進而導致細胞的轉型,這或許就是奈米二氧化鈦所引發細胞癌化的原因。

Titanium dioxide nanoparticles (nano-TiO2) are widely used as cleaning, cosmetic, white paint and medical science materials because of its low toxicity. Recent research has shown that nano-sized TiO2 particles possess cytotoxicity and genotoxicity through inhibition in cell viability, induction of apoptosis, as well as formation of MN (micronuclei) and NPB (nucleoplasmic bridge). On the other hand, an increase in cell proliferation is showen to be associated with tumorgenesis in mice exposed to nano-TiO2. In this study, we confirmed that nano-sized TiO2 increased NIH 3T3 cell viability determined by MTT assay and cell proliferation by trypan blue as well as colony forming assays. Further experiments demonstrated that nano-TiO2 stimulated ROS generation and ERK activation.The long-term effect of nano-TiO2 was investigated by selecting NIH 3T3 cells grown in 10μg/mL nano-TiO2 for weeks. We found altered morphology and size in nano-TiO2-exposed cells compared to wild type. In addition, cell transformation as well as numbers of MN, binucleate, and multinucleate were significantly increased by nano-TiO2 exposure. Morever, long-term exposure of nano-TiO2 affected cell division and resulted in chromosome misalignment, missegregation and cytokinesis failure. Taken together, our results suggested that nano-TiO2 enhanced cell proliferation and genomic instability leading to cell transformation.
URI: http://hdl.handle.net/11455/20119
其他識別: U0005-2706200819210300
Appears in Collections:生物醫學研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.