Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/20149
標題: | 73位置絲胺酸的磷酸化降低酵母菌Rad23與26S蛋白酶體的結合能力及其所調控的蛋白質降解 Phosphorylation of Serine-73 decreases the association of yeast Rad23 with the 26S proteasome and Rad23-mediated protein degradation |
作者: | 梁瑞岳 Liang, Ruei-Yue |
關鍵字: | Rad23;蛋白酶體;proteasome;protein degradation;蛋白質降解 | 出版社: | 生物醫學研究所 | 引用: | Bech-Otschir, D., Helfrich, A., Enenkel, C., Consiglieri, G., Seeger, M., Holzhutter, H.G., Dahlmann, B., and Kloetzel, P.M. (2009). Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat Struct Mol Biol 16, 219-225. Bertolaet, B.L., Clarke, D.J., Wolff, M., Watson, M.H., Henze, M., Divita, G., and Reed, S.I. (2001). UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8, 417-422. Biggins, S., Ivanovska, I., and Rose, M.D. (1996). Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 133, 1331-1346. Branzei, D., and Foiani, M. (2006). The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312, 2654-2659. Chen, L., and Madura, K. (2002). Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22, 4902-4913. Chen, L., Shinde, U., Ortolan, T.G., and Madura, K. (2001). Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2, 933-938. Chuang, S.M., Chen, L., Lambertson, D., Anand, M., Kinzy, T.G., and Madura, K. (2005). Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25, 403-413. Clarke, D.J., Mondesert, G., Segal, M., Bertolaet, B.L., Jensen, S., Wolff, M., Henze, M., and Reed, S.I. (2001). Dosage suppressors of pds1 implicate ubiquitin-associated domains in checkpoint control. Mol Cell Biol 21, 1997-2007. Clarke, D.J., Segal, M., Mondesert, G., and Reed, S.I. (1999). The Pds1 anaphase inhibitor and Mec1 kinase define distinct checkpoints coupling S phase with mitosis in budding yeast. Curr Biol 9, 365-368. Coux, O., Tanaka, K., and Goldberg, A.L. (1996). Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65, 801-847. Dantuma, N.P., Heinen, C., and Hoogstraten, D. (2009). The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 8, 449-460. Diaz-Martinez, L.A., Kang, Y., Walters, K.J., and Clarke, D.J. (2006). Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div 1, 28. Duesberg, P., Li, R., Fabarius, A., and Hehlmann, R. (2005). The chromosomal basis of cancer. Cell Oncol 27, 293-318. Elsasser, S., Gali, R.R., Schwickart, M., Larsen, C.N., Leggett, D.S., Muller, B., Feng, M.T., Tubing, F., Dittmar, G.A., and Finley, D. (2002). Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4, 725-730. Friedberg, E.C. (2001). How nucleotide excision repair protects against cancer. Nat Rev Cancer 1, 22-33. Gillette, T.G., Huang, W., Russell, S.J., Reed, S.H., Johnston, S.A., and Friedberg, E.C. (2001). The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev 15, 1528-1539. Guzder, S.N., Bailly, V., Sung, P., Prakash, L., and Prakash, S. (1995). Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem 270, 8385-8388. Hershko, A. (2005). The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12, 1191-1197. Hershko, A., and Ciechanover, A. (1992). The ubiquitin system for protein degradation. Annu Rev Biochem 61, 761-807. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479. Hoeijmakers, J.H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. Jansen, L.E., Verhage, R.A., and Brouwer, J. (1998). Preferential binding of yeast Rad4.Rad23 complex to damaged DNA. J Biol Chem 273, 33111-33114. Johnson, E.S., Ma, P.C., Ota, I.M., and Varshavsky, A. (1995). A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270, 17442-17456. Kim, I., Mi, K., and Rao, H. (2004). Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 15, 3357-3365. Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H.D., Mayer, T.U., and Jentsch, S. (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635-644. Lehmann, A.R. (2003). DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101-1111. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D., et al. (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13, 1831-1843. Ng, J.M., Vermeulen, W., van der Horst, G.T., Bergink, S., Sugasawa, K., Vrieling, H., and Hoeijmakers, J.H. (2003). A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17, 1630-1645. Ohno, A., Jee, J., Fujiwara, K., Tenno, T., Goda, N., Tochio, H., Kobayashi, H., Hiroaki, H., and Shirakawa, M. (2005). Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13, 521-532. Ortolan, T.G., Chen, L., Tongaonkar, P., and Madura, K. (2004). Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res 32, 6490-6500. Ortolan, T.G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C., and Madura, K. (2000). The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2, 601-608. Pickart, C.M. (2000). Ubiquitin in chains. Trends Biochem Sci 25, 544-548. Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533. Raasi, S., and Pickart, C.M. (2003). Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278, 8951-8959. Raasi, S., Varadan, R., Fushman, D., and Pickart, C.M. (2005). Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12, 708-714. Rao, H., and Sastry, A. (2002). Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J Biol Chem 277, 11691-11695. Rasnick, D., and Duesberg, P.H. (1999). How aneuploidy affects metabolic control and causes cancer. Biochem J 340 ( Pt 3), 621-630. Roos-Mattjus, P., and Sistonen, L. (2004). The ubiquitin-proteasome pathway. Ann Med 36, 285-295. Russell, S.J., Reed, S.H., Huang, W., Friedberg, E.C., and Johnston, S.A. (1999). The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3, 687-695. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., and Madura, K. (1998). Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715-718. Seeger, M., Ferrell, K., and Dubiel, W. (1997). The 26S proteasome: a dynamic structure. Mol Biol Rep 24, 83-88. Sherman, M.Y., and Goldberg, A.L. (2001). Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15-32. Stelter, P., and Ulrich, H.D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191. Sweder, K., and Madura, K. (2002). Regulation of repair by the 26S proteasome. J Biomed Biotechnol 2, 94-105. Szyjka, S.J., Aparicio, J.G., Viggiani, C.J., Knott, S., Xu, W., Tavare, S., and Aparicio, O.M. (2008). Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev 22, 1906-1920. Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102. Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, J.R., 3rd, Koonin, E.V., and Deshaies, R.J. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615. Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68, 1015-1068. Vu, P.K., and Sakamoto, K.M. (2000). Ubiquitin-mediated proteolysis and human disease. Mol Genet Metab 71, 261-266. Watkins, J.F., Sung, P., Prakash, L., and Prakash, S. (1993). The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13, 7757-7765. Weissman, A.M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2, 169-178. Wu, C.J., Conze, D.B., Li, T., Srinivasula, S.M., and Ashwell, J.D. (2006). Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8, 398-406. Xie, Z., Liu, S., Zhang, Y., and Wang, Z. (2004). Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res 32, 5981-5990. Yang, Y., Kitagaki, J., Wang, H., Hou, D.X., and Perantoni, A.O. (2009). Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 100, 24-28. Yao, T., and Cohen, R.E. (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403-407. | 摘要: | Rad23是一個具有高度保留性的蛋白,並且對於泛素系統所調控的蛋白質降解和細胞內的核甘酸修補機制是重要的。然而,細胞是透過何種重要訊號來調控 Rad23的功能目前還不清楚,為了研究細胞內訊號是如何調控Rad23,利用定位點突變技術及體外激酶實驗證實Rad23的73號位置絲胺酸是可以被激酶Rad53所磷酸化。此外,不管在活體內或活體外的實驗,73位置模擬磷酸化的突變株S73D降低了Rad23和26S蛋白水解酶複合體的結合能力。有趣的是,當細胞處理staurosporine來抑制磷酸化的現象,會增加Rad23和26S蛋白水解酶複合體的結合能力。另外經由泛素系統所降解的蛋白質Ub-Proline-β-galactosidase (Ub-Pro-β-gal),在表現S73D的突變株中,其穩定度是明顯的增加。而在Rad23功能性的分析上發現S73A/D的突變株並不影響細胞對UV的敏感度且對於Rad4的穩定度也不受影響。基於以上的研究結果,我們推測Rad23的73號位置絲胺酸磷酸化會降低Rad23和26S蛋白水解酶複合體的結合能力,進而影響到其所調控的蛋白質降解,但其調控的分子機制則須更進一步的研究探討。 Rad23 is an evolutionarily conserved protein that is important for ubiquitin-proteasome system (UPS) and nucleotide excision repair (NER). However, the significance signaling regulation of Rad23 function is still unclear. Site-directed mutagenesis and in vitro kinase assay proved that Serine-73 is phosphorylated by Rad53. In addition, phosphorylation-mimic S73D mutant decreased the association of Rad23 to the 26S proteasome in vivo and in vitro. Interestingly, staurosporine increased the Rad23 and 26S proteasome interaction. Ub-Proline-β-galactosidase (Ub-Pro-β-gal), a model substrate of the ubiquitin/ proteasome pathway, was significantly stabilized in S73D expressing strain. Furthermore, functional analysis showed that S73A/D mutants were similar to wild-type in UV sensitivity and Rad4 stability. Based on these data, we suggest that phosphorylation of Serine-73 decreases the association of Rad23 with the 26S proteasome and affects the Rad23-mediated proteolysis. However, the molecular mechanism for S73 phosphorylation by signaling will be further investigated. |
URI: | http://hdl.handle.net/11455/20149 | 其他識別: | U0005-2907201016353000 |
Appears in Collections: | 生物醫學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.