Please use this identifier to cite or link to this item:
標題: AMPKα之表現與活化在非小細胞肺癌之意義
The Expression and Activation of AMPKα in Non-Small Cell Lung Cancer
作者: 王詠中
Wang, Yung-Chung
關鍵字: Non small cell lung cancer;AMPK蛋白激酶;NSCLC;AMPK
出版社: 醫學科技研究所
引用: Ailles LE and Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol. 18:460-6. Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M and Alessi DR (2008) Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J. 411:249-60. Baumann P, Mandl-Weber S, Emmerich B, Straka C and Schmidmaier R (2007) Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Exp Cell Res. 313:3592-603. Berns A (2005) Stem Cells for Lung Cancer? Cell 121:811-3 Blackhall FH and Shepherd FA (2007) Small cell lung cancer and targeted therapies. Curr Opin Oncol. 19:103-108. Brown JM (1990) Tumor hypoxia, drug resistance, and metastases. J Natl Cancer Inst. 82:371-80. Carretero J, Medina PP, Blanco R, Smit L, Tang M, Roncador G, Maestre L, Conde E, Lopez-Rios F, Clevers HC, and Sanchez-Cespedes M (2007) Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26:1616-25. Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, Becker K, Yates JR 3rd and Felding-Habermann B (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 67:1472-86. Collins LG, Haines C, Perkel R, and Enck RE (2007) Lung cancer: diagnosis and management. Am Fam Physician 75:56-63. Enatsu S, Iwasaki A, Shirakusa T, Hamasaki M, Nabeshima K, Iwasaki H, Kuroki M and Kuroki M (2006) Expression of hypoxia-inducible factor-1 alpha and its prognostic significance in small-sized adenocarcinomas of the lung. Eur J Cardiothorac Surg. 29:891-5. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15:504-14. Fruman DA and Edinger AL (2008) Cancer therapy: staying current with AMPK. Biochem J. 412:e3-5. Giaccone G (2007) The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res. 13:1961-70. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, Cruz-Correa M and Offerhaus JA (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119:1447-53. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 8:774-85. Hardie DG (2008) Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 582:81-9. Hardie DG, Carling D, and Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 67:821-55. Hardie DG and Sakamato K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21:48-60. Hong SP, Leiper FC, Woods A, Carling D, and Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 100:8839-43. Huang LE and Bunn HF (2003) Hypoxia-inducible factor and its biomedical relevance. J Biol Chem. 278:19575-8. Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, McBurnie W, Fleming S and Alessi DR (2008) Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J. 412:211-21. Hwang JT, Kwak DW, Lin SK, Kim HM, Kim YM and Park OJ (2007) Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann N Y Acad Sci. 1095:441-8. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O''Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironenko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Solomon H, Stephens P, Teague J, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Reinhold W, Weinstein JN, Stratton MR, Futreal PA and Wooster R (2006) Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 5:2606-12. Jensen RL (2006) Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures. Neurosurg Focus 20:E24 Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, and Esumi H (2002) Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21:6082-90. Kim HS, Hwang JT, Yun H, Chi SG, Lee SJ, Kang I, Yoon KS, Choe WJ, Kim SS, and Ha J (2008) Inhibition of AMP-activated Protein Kinase Sensitizes Cancer Cells to Cisplatin-induced Apoptosis via Hyper-induction of p53. J Biol Chem. 283:3731-42. Kim JW and Dang CV (2006) Cancer''s molecular sweet tooth and the Warburg effect. Cancer Res. 66:8927-30. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, Foretz M and Viollet B (2006) 5''-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol. 26:5336-47. Lam WK and Watkins DN (2007) Lung cancer: future directions. Respirology 12:471-7 Luo B, Parker GJ, Cooksey RC, Soesanto Y, Evans M, Jones D and McClain DA (2007) Chronic hexosamine flux stimulates fatty acid oxidation by activating AMP-activated protein kinase in adipocytes. J Biol Chem. 282:7172-80. Martínez-Chantar ML, Vázquez-Chantada M, Garnacho M, Latasa MU, Varela-Rey M, Dotor J, Santamaria M, Martínez-Cruz LA, Parada LA, Lu SC, and Mato JM (2006) S-adenosylmethionine regulates cytoplasmic HuR via AMP-activated kinase. Gastroenterology 131:223-32. Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M, Shimizu E, Minna JD and Yokota J (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26:5911-8. Neurath KM, Keough MP, Mikkelsen T and Claffey KP (2006) AMP-dependent protein kinase alpha 2 isoform promotes hypoxia-induced VEGF expression in human glioblastoma. Glia. 53:733-43. Pardal R, Clarke MF, and Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895-902. Pouysségur J, Dayan F and Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437-43. Ruderman NB, Keller C, Richard AM, Saha AK, Luo Z, Xiang X, Giralt M, Ritov VB, Menshikova EV, Kelley DE, Hidalgo J, Pedersen BK, and Kelly M (2006) Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes 55 Suppl 2:S48-54 Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H and Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487-98. Sengupta TK, Leclerc GM, Hsieh-Kinser TT, Leclerc GJ, Singh I and Barredo JC (2007) Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy. Mol Cancer 6:46 Sharma SV, Bell DW, Settleman J and Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169-81. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105-27. Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol. 18:598-608. Spira A and Ettinger DS (2004) Multidisciplinary Management of Lung Cancer. N Engl J Med. 350:379-92. Su RY, Chao Y, Chen TY, Huang DY and Lin WW (2007) 5-Aminoimidazole-4-carboxamide riboside sensitizes TRAIL- and TNF-alpha-induced cytotoxicity in colon cancer cells through AMP-activated protein kinase signaling. Mol Cancer Ther. 6:1562-71. Sun Y, Connors KE and Yang DQ (2007) AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner. Mol Cell Biochem. 306:239-45. Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Ogura T, Lavin MF and Esumi H (2004) IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem Biophys Res Commun. 324:986-92. Thomson DM, Hansen MD and Winder WW (2008) Regulation of the AMPK-related protein kinases by ubiquitination. Biochem J. 411:e9-10. Tower MC and Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 100:328-341. Trédan O, Galmarini CM, Patel K and Yannock IF (2007) Drug Resistande and the Solid Tumor Microenvironment. J Natl Cancer Inst. 99:1441-54 Varmus H, Pao W, Politi K, Podsypanina K and Du YC (2005) Oncogenes come of age. Cold Spring Harb Symp Quant Biol. 70:1-9 Vaupel P and Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26: 225-239 Yun H, Lee M, Kim SS and Ha J (2005) Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem. 280:9963-72. Zarember KA and Malech HL (2005) HIF-1α: a master regulator of innate host defenses? J Clin Invest. 115: 1702-4.
AMP-activated protein kinase (AMPK) 是一個在演化上具有相當高度保留性的蛋白激酶,它在細胞內是一個能量守護者,可以幫助細胞適應許多不同的代謝壓力 (例如:組織缺氧) 。由於 AMPK 在癌症細胞內所扮演的角色到目前為止還尚未清楚,因此在本研究中我們將探討AMPKα之表現與活化在非小細胞肺癌內是否具有何種意義。我們的結果發現AMPKα蛋白在肺癌病人的腫瘤組織內有高度的表現,顯示 AMPKα對肺癌的生成是相當重要的。此外,我們的結果也指出AMPKα在腫瘤組織磷酸化的程度比非腫瘤組織來得高,顯示 AMPKα在腫瘤組織的高度活化可能會促進腫瘤細胞在缺氧時細胞內能量的回復以及存活。綜合我們所有的實驗結果,我們推測AMPKα的表現和活化與缺氧下肺癌的惡化有密切關連。

AMP-activated protein kinase (AMPK) is an evolutionally conserved protein kinase that serves as an energy guardian to help cells adapt to various metabolic stress including hypoxia. Because the role of AMPK in cancers has not been fully elucidated, in this study we investigated the expression and activation of AMPKα in non-small cell
lung cancer. Our results showed that AMPKα is overexpressed in lung tumor tissues, suggesting that AMPKα might be important for lung tumor development. Furthermore, we found that AMPKα is mostly phosphorylated in lung tumor tissues, showing that its activation may promote energy-restoration and survival of cancer cells under hypoxia. Taken all together, we concluded that the expression and activation of AMPKα are closely associated with disease progression of lung cancer, of which hypoxia was frequently found.
其他識別: U0005-0608200814200200
Appears in Collections:生物醫學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.