Please use this identifier to cite or link to this item:
標題: 退化性膝關節炎滑囊液之次級蛋白質體分析
Sub-proteome analysis of synovial fluid from knee joint of degenerative osteoarthritis
作者: 林順智
Lin, Shun-Chih
關鍵字: proteome;蛋白質體學;synovial fluid;degenrative arthritis;knee;滑囊液;退化性膝關節炎;膝關節
出版社: 醫學科技研究所
引用: 1. Sinz, A., et al., Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis, 2002. 23(19): p. 3445-56. 2. Garcia, B.A., et al., Protein profile of osteoarthritic human articular cartilage using tandem mass spectrometry. Rapid Commun Mass Spectrom, 2006. 20(20): p. 2999-3006. 3. Vincourt, J.B., et al., Establishment of a reliable method for direct proteome characterization of human articular cartilage. Mol Cell Proteomics, 2006. 5(10): p. 1984-95. 4. Wu, J., et al., Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum, 2007. 56(11): p. 3675-84. 5. Hermansson, M., et al., Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes. J Biol Chem, 2004. 279(42): p. 43514-21. 6. Ruiz-Romero, C., M.J. Lopez-Armada, and F.J. Blanco, Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics, 2005. 5(12): p. 3048-59. 7. De Ceuninck, F., et al., Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J Biomol Tech, 2005. 16(3): p. 256-65. 8. Andereya, S., et al., Comparison of modern marker proteins in serum and synovial fluid in patients with advanced osteoarthrosis and rheumatoid arthritis. Rheumatol Int, 2006. 26(5): p. 432-8. 9. Sugiyama, S., et al., Procollagen II C propeptide level in the synovial fluid as a predictor of radiographic progression in early knee osteoarthritis. Ann Rheum Dis, 2003. 62(1): p. 27-32. 10. Liao, H., et al., Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum, 2004. 50(12): p. 3792-803. 11. Yamagiwa, H., et al., Two-dimensional gel electrophoresis of synovial fluid: method for detecting candidate protein markers for osteoarthritis. J Orthop Sci, 2003. 8(4): p. 482-90. 12. Gobezie, R., et al., High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther, 2007. 9(2): p. R36. 13. Momohara, S., et al., Dermatan sulfate in the synovial fluid of patients with knee osteoarthritis. Mod Rheumatol, 2007. 17(4): p. 301-5. 14. Xiang, Y., et al., Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum, 2004. 50(5): p. 1511-21. 15. Xiang, Y., et al., Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. J Immunol, 2006. 176(5): p. 3196-204. 16. Jordan, K.M., et al., The use of conventional and complementary treatments for knee osteoarthritis in the community. Rheumatology (Oxford), 2004. 43(3): p. 381-4. 17. Lawrence, R.C., et al., Estimates of the prevalence of selected arthritic and musculoskeletal diseases in the United States. J Rheumatol, 1989. 16(4): p. 427-41. 18. Buckland-Wright, J.C., et al., Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis, 1995. 54(4): p. 263-8. 19. Duddy, J., et al., A comparison of the semiflexed (MTP) view with the standing extended view (SEV) in the radiographic assessment of knee osteoarthritis in a busy routine X-ray department. Rheumatology (Oxford), 2005. 44(3): p. 349-51. 20. Davis, C.R., et al., Can biochemical markers serve as surrogates for imaging in knee osteoarthritis? Arthritis Rheum, 2007. 56(12): p. 4038-47. 21. Smith, R.L., Degradative enzymes in osteoarthritis. Front Biosci, 1999. 4: p. D704-12. 22. Hu, S., J.A. Loo, and D.T. Wong, Human body fluid proteome analysis. Proteomics, 2006. 6(23): p. 6326-53. 23. Reimann, I., Pathological human synovial fluids. Viscosity and boundary lubricating properties. Clin Orthop Relat Res, 1976(119): p. 237-41. 24. Aspden, R.M., B.A. Scheven, and J.D. Hutchison, Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism. Lancet, 2001. 357(9262): p. 1118-20. 25. Myers, S.L., Synovial fluid markers in osteoarthritis. Rheum Dis Clin North Am, 1999. 25(2): p. 433-49, viii-ix. 26. Vignon, E., et al., Recommendations for the registration of drugs used in the treatment of osteoarthritis: an update on biochemical markers. Osteoarthritis Cartilage, 2001. 9(4): p. 289-93. 27. Gorg, A., et al., The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000. 21(6): p. 1037-53. 28. Smith, M.A., et al., Use of two-dimensional gel electrophoresis to measure changes in synovial fluid proteins from patients with rheumatoid arthritis treated with antibody to CD4. Clin Diagn Lab Immunol, 2001. 8(1): p. 105-11. 29. Link, A.J., et al., Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol, 1999. 17(7): p. 676-82. 30. Wu, S.L., et al., Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system. J Proteome Res, 2002. 1(5): p. 459-65. 31. Wu, J., et al., Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics, 2005. 4(9): p. 1251-64. 32. Colantonio, D.A., et al., Effective removal of albumin from serum. Proteomics, 2005. 5(15): p. 3831-5. 33. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54. 34. Borkhoff, C.M., et al., The effect of patients'' sex on physicians'' recommendations for total knee arthroplasty. Cmaj, 2008. 178(6): p. 681-7. 35. Liu, B., et al., Relationship of height, weight and body mass index to the risk of hip and knee replacements in middle-aged women. Rheumatology (Oxford), 2007. 46(5): p. 861-7. 36. Wendelboe, A.M., et al., Relationships between body mass indices and surgical replacements of knee and hip joints. Am J Prev Med, 2003. 25(4): p. 290-5. 37. Franklin, J., et al., Sex differences in the association between body mass index and total hip or knee joint replacement due to osteoarthritis. Ann Rheum Dis, 2008. 38. Steel, L.F., et al., Efficient and specific removal of albumin from human serum samples. Mol Cell Proteomics, 2003. 2(4): p. 262-70. 39. Georgiou, H.M., G.E. Rice, and M.S. Baker, Proteomic analysis of human plasma: failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics, 2001. 1(12): p. 1503-6. 40. Lollo, B.A., et al., Improved two-dimensional gel electrophoresis representation of serum proteins by using ProtoClear. Electrophoresis, 1999. 20(4-5): p. 854-9. 41. Zolotarjova, N., et al., Differences among techniques for high-abundant protein depletion. Proteomics, 2005. 5(13): p. 3304-13. 42. Aigner, T., et al., Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum, 2001. 44(12): p. 2777-89. 43. Awbrey, B.J., et al., The role of alpha-1-protease inhibitor (A1PI) in the inhibition of protease activity in human knee osteoarthritis. Agents Actions Suppl, 1993. 39: p. 167-71. 44. Petropoulou, P., et al., Measurement of both native and inactivated forms of alpha1 proteinase inhibitor in human inflammatory extracellular fluids. J Clin Periodontol, 2003. 30(9): p. 795-801. 45. Paczek, L., W. Michalska, and I. Bartlomiejczyk, Trypsin, elastase, plasmin and MMP-9 activity in the serum during the human ageing process. Age Ageing, 2008. 37(3): p. 318-23. 46. Ranes, J. and J.K. Stoller, A review of alpha-1 antitrypsin deficiency. Semin Respir Crit Care Med, 2005. 26(2): p. 154-66. 47. Richmond, R.J. and K.M. Zellner, Alpha1-antitrypsin deficiency: incidence and implications. Dimens Crit Care Nurs, 2005. 24(6): p. 255-60; quiz 261-2 Review. 48. Fiedler, E., et al., [Angioedema in hereditary deficiency of complement factor 1 esterase inhibitor and alpha 1-antitrypsin]. Dtsch Med Wochenschr, 2005. 130(4): p. 150-2. 49. Moriyama, K., et al., A cysteine-containing truncated apo A-I variant associated with HDL deficiency. Arterioscler Thromb Vasc Biol, 1996. 16(12): p. 1416-23. 50. Booth, D.R., et al., Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. J Clin Invest, 1996. 97(12): p. 2714-21. 51. Uehara, Y., et al., POPC/apoA-I discs as a potent lipoprotein modulator in Tangier disease. Atherosclerosis, 2008. 197(1): p. 283-9. 52. Okabe, T., et al., Detection of gene expression in synovium of patients with osteoarthritis using a random sequencing method. Acta Orthop, 2007. 78(5): p. 687-92. 53. Sanchez-Enriquez, S., et al., Increase levels of apo-A1 and apo B are associated in knee osteoarthritis: lack of association with VEGF-460 T/C and +405 C/G polymorphisms. Rheumatol Int, 2008. 54. Lementowski, P.W. and S.B. Zelicof, Obesity and osteoarthritis. Am J Orthop, 2008. 37(3): p. 148-51. 55. Ananth, L., P.E. Prete, and M.L. Kashyap, Apolipoproteins A-I and B and cholesterol in synovial fluid of patients with rheumatoid arthritis. Metabolism, 1993. 42(7): p. 803-6. 56. Bresnihan, B., et al., Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: a control mechanism of cytokine production? Arthritis Res Ther, 2004. 6(6): p. R563-6. 57. Doherty, N.S., et al., Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis, 1998. 19(2): p. 355-63. 58. Chase, A., F.H. Grand, and N.C. Cross, Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood, 2007. 110(10): p. 3729-34. 59. Yan, X., R. Habedanck, and E.A. Nigg, A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol Cell, 2006. 17(2): p. 634-44. 60. Donate, F., et al., Extracellular tropomyosin: a novel common pathway target for anti-angiogenic therapy. Curr Cancer Drug Targets, 2004. 4(7): p. 543-53. 61. Zborovskii, A.B., et al., [Antibodies to skeletal muscle myofibrillar proteins in the diagnosis of rheumatoid arthritis]. Ter Arkh, 1995. 67(8): p. 54-6. 62. Baharav, E., et al., Tropomyosin-induced arthritis in rats. Clin Exp Rheumatol, 2007. 25(4 Suppl 45): p. S86-92. 63. Nah, S.S., et al., Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-alpha in human osteoarthritic chondrocytes. FEBS Lett, 2007. 581(9): p. 1928-32. 64. Carames, B., et al., Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. Osteoarthritis Cartilage, 2008. 16(6): p. 715-22. 65. Nagata, S., Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol Rev, 2007. 220: p. 237-50. 66. McDonald, J.M., et al., The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration. Cancer Biol Ther, 2006. 5(3): p. 300-4. 67. Schreiner, A., et al., Junction protein shrew-1 influences cell invasion and interacts with invasion-promoting protein CD147. Mol Biol Cell, 2007. 18(4): p. 1272-81.
退化性膝關節炎普遍發生在60歲以上的老年人,主要是由於關節軟骨損壞所造成,目前已知軟骨細胞對於關節軟骨的損壞扮演重要角色。最近的研究顯示關節損壞的過程中會伴隨著細胞型態的變化,藉由反轉錄-聚合酵素連鎖反應、西方墨點轉漬法、免疫細胞學與生化學等方法,可幫助我們了解關節損壞過程中的基因表現。 但是,目前對於退化性膝關節炎以及其關節軟骨損壞的分子機制,仍有許多未明之處。

Osteoarthritis (OA) is a common disabling human condition in the world, which ultimately results in degeneration of the articular cartilage. It is generally accepted that, at the molecular level, cartilage degeneration is characterized by a general failure of chondrocyte to maintain an appropriate balance between synthesis and degeneration of extracellular matrices (ECM). Besides, it is believed that degeneration of cartilage may result in different protein profiles in synovial fluid (SF). However, the protein profile variation in cartilage or SF accompanying with degeneration is not well studied.
SF is a stringy fluid and contains abundant glycosaminoglycans (GAGs) and albumin in the cavities of synovial joints. The rich GAGs in SF interfere with many protein analyses, e.g. liquid chromatography and isoelectric focusing. For this reason, we use a sub-proteomic approach to investigate the SF protein profiles among healthy and degenerative OA subjects.
In this study, we collected forty-two SF samples from OA patients underwent total knee replacement surgery and four SF samples from non-OA without inflammation patients for surveillance of OA-specific proteins. No obvious difference is presented on SDS-PAGE and two-dimensional (2-D) gel; however, dozens of OA-specific proteins are shown on albumin-depletion 2-D gels. The protein spots with different expression are picked, in situ digested and MALDI-TOF MS-analyzed. Ten potential biomarkers are identified and characterized. Two proteins (Apolipoprotein A-I and A-IV) related with the lipid metabolism was up-regulated in OA group and inversely alpha-1 antitrypsin precursor (AAT), inhibitor of serine protease, was down-regulated in OA group. Semi-quantification of 2-D PAGE discovered the differential expression between OA and non-OA patients. Another seven proteins were first identified and the relation with the development of OA has not been mentioned. They may play an important role of the development of OA pathogenesis but they underlining mechanism need more complete research. Western blot analysis for ATT and Apolipoprotein A-I had confirmed the differential expression as subproteome analysis of 2-D PAGE. It is encouraging to apply the antibody of AAT and Apo A-I clinically for OA diagnosis, early detection and probably the monitoring the response of therapeutic intervention.
其他識別: U0005-1508200819102500
Appears in Collections:生物醫學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.