Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20157
標題: 斥消靈減少尿路上皮癌之研究
The study of Rapamycin Attenuates Urothelial Carcinoma
作者: 張其皓
Chang, Chi-Hao
關鍵字: urothelial carcinoma;尿路上皮癌;rapamycin;斥消靈
出版社: 醫學科技研究所
引用: 中文 1. 江博暉、江博煌、吳文正、康智雄,醫學新知2:尿路上皮癌新知,頁3-27 , 2006。 2. 江博暉、江博煌、吳文正、康智雄,醫學新知2:尿路上皮癌新知,頁35-40, 2006。 西文 1. Vajdic CM, McDonald SP, McCredie MRE, van Leeuwen MT, Stewart JH, Law M, Chapman JR, Webster AC, Kaldor JM, Grulich AE. Cancer incidence before and after kidney transplantation. JAMA 296: 2823-2831, 2006. 2. Geissler EK, Schlitt HJ, Thomas G. mTOR, Cancer and Transplantation. Am J Transplant. 8: 2212-2218, 2008. 3. Kauffman HM, Cherikh WS, McBride MA, Cheng Y, Hanto DW. Post-transplant de novo malignancies in renal transplant recipients: the past and present. Transplant Int. 19: 607-620, 2006. 4. Webster AC, Wong G, Craig JC, Chapman JR. Managing Cancer Risk and Decision Making After Kidney Transplantation. Am J Transplant. 8: 2185-2191, 2008. 5. Dantal J, Pohanka E. Malignancies in renal transplantation: an unmet medical need. Nephrol Dial Transplant. 22: 14-110, 2007. 6. Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin for health and disease. Drug Discov Today 12: 112-124, 2007. 7. Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM, Claesson K, Stallone G, Russ G, Rostaing L, Kreis H, Burke JT, Brault Y, Scarola JA, Neylan JF. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephro. 17: 581-589, 2006. 8. Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 80: 883-889, 2005. 9. Wimmer CD, Rentsch M, Crispin A, Illner WD, Arbogast H, Graeb C, Jauch KW, Guba M. The janus face of immunosuppression-de novo malignancy after renal transplantation: the experience of the Transplantation Center Munich. Kidney Int. 71: 1271-1278, 2007. 10. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O''Toole T, Lustgarten S, Moore L, Motzer RJ; Global ARCC Trial. Temsirolimus, Interferon Alfa, or Both for Advanced Renal-Cell Carcinoma. N Engl J Med. 356: 2271-2281, 2007. 11. Wu MJ, Lian JD, Yang CR et al. High cumulative incidence of urinary tract transitional cell carcinoma after kidney transplantation in Taiwan. Am J Kidney Dis. 43: 1091-1097, 2004. 12. Chuang CH, Chien YS, Cheng YT, Chen YT, Hu TH, Hsieh H. Hepatocellular Carcinoma in Renal Transplant Recipient. Transplant Proc. 40: 2392-2394, 2008. 13. Chiang YJ, Wang HH, Liu KL, Chu SH, Lee WC. Hepatocellular Carcinoma Following Renal Transplantation: Experience in Northern Taiwan. Transplant Proc. 40: 2397-2399, 2008. 14. Hung YM, Chou KJ, Hung SY, Chung HM, Chang JC. De novo malignancies after kidney transplantation. Urology 69: 1041-1044, 2007. 15. Wimmer CD, Rentsch M, Crispin A, Illner WD, Arbogast H, Graeb C, Jauch KW, Guba M. The janus face of immunosuppression – de novo malignancy after renal transplantation: the experience of the Transplantation Center Munich. Kidney Int. 71: 1271-1278, 2007. 16. Kauffman HM, Cherikh WS, McBride MA, Cheng Y, Hanto DW. Post-transplant de novo malignancies in renal transplant recipients: the past and present. Transpl Int. 19: 607-620, 2006. 17. Fingar DC, Blenis J. Target of Rapamycin (TOR): an I tegrator of nutrient andgrowth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23: 3151-3171, 2004. 18. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 124: 471-484, 2006. 19. Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. 3:371-377, 2003. 20. Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin- associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 275: 7416-7423, 2000. 21. Edinger AL, Linardic CM, Chiang GG, Thompson CB, Abraham RT. Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res. 63: 8451-8460, 2003. 22. Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 6: 1122-1128, 2004. 23. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 344 Part 2: 427-431, 1999. 24. Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60: 3504-3513, 2000. 25. Reynolds THt, Bodine SC, Lawrence JC Jr. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem. 277: 17657- 17662, 2002. 26. Cheng SW, Fryer LG, Carling D, Shepherd PR. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem. 279: 15719- 15722, 2004. 27. Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem. 280: 26089-26093, 2005. 28. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177-189, 2002. 29. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-175, 2002. 30. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11: 895-904, 2003. 31. Cantley LC. The phosphoinositide 3-kinase pathway. Science 296: 1655-1657, 2002. 32. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 346: 561-576, 2000. 33. Cantrell DA. Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 114: 1439-1445, 2001. 34. Toker A, Newton AC. Cellular signaling: pivoting around PDK- 1. Cell 103: 185-18, 2000. 35. Belham C, Wu S, Avruch J. Intracellular signalling: PDK1 – a kinase at the hub of things. Curr Biol. 9: R93-R96, 1999. 36. McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, Armit LJ, Arthur JS, Alessi DR. The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J. 23: 2071-2082, 2004. 37. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151-162, 2002. 38. Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, Nellist M, Yeung RS, Halley DJ, Nicosia SV, Pledger WJ, Cheng JQ. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem. 277: 35364-35370, 2002. 39. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 4: 658-665, 2002. 40. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 4: 648-657, 2002. 41. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450: 736-40, 2007. 42. Høyer Hansen M, Jäättelä M. AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3: 381-3, 2007. 43. Kim JE, Chen J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53: 2748-56, 2004. 44. Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res. 253: 100-9, 1999. 45. Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, Gradi A, Aebersold R, Sonenberg N. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 19: 434-44, 2000. 46. Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 275: 7416-23, 2000. 47. Kumar V, Pandey P, Sabatini D, Kumar M, Majumder PK, Bharti A, Carmichael G, Kufe D, Kharbanda S. Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation. EMBO J. 19: 1087-97, 2000. 48. Von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol. 17: 5426-36, 1997. 49. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 272: 26457-63, 1997. 50. Takuwa N, Fukui Y, Takuwa Y. Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70(S6K)-independent signaling in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol. 19: 1346-58, 1999. 51. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 59: 3581-7, 1999. 52. Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence JC Jr, Houghton PJ. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol. 54: 815-24, 1998. 53. Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 10: 5820-7, 2004. 54. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J. 16: 771-80, 2002. 55. Chung J, Bachelder RE, Lipscomb EA, Shaw LM, Mercurio AM. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol. 158: 165-74, 2002. 56. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457-468, 2002. 57. Wullschleger S, Loewith R, Oppliger W, Hall MN. Molecular organization of target of rapamycin complex 2. J Biol Chem. 280: 30697-30704, 2005. 58. Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, Fairclough S, Iverson C, Wedaman KP, Powers T. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem. 279: 14752-14762, 2004. 59. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr Biol. 14: 1296-1302, 2004. 60. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B. SIN1/MIP1 maintains rictor- mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125-137, 2006. 61. Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 20: 2820-2832, 2006. 62. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and ATK/PKB. Mol Cell 22: 159-168, 2006. 63. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11: 859-871, 2006. 64. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098-1101, 2005. 65. Bayascas JR, Alessi DR. Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 18: 143-145, 2005. 66. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G, Testa JR. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinoma. Int. J. Cancer. 64: 280-285, 1995. 67. Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, Ma XL, Shelley SA, Jove R, Tsichlis PN, Nicosia SV, Cheng JQ. AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol. 159: 431-437, 2001. 68. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY, Shelley SA, Nicosia SV, Cheng JQ. Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor-α (Erα) via interaction between Era and PI3K. Cancer Res. 61: 5985-5991, 2001. 69. Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, Bernet V, Burman KD, Kohn LD, Saji M. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 61: 6105-6111, 2001. 70. Bayascas JR, Alessi DR. Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 18: 143-145, 2005. 71. Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 20: 4380-4390, 2001. 72. Collins BJ, Deak M, Arthur JS, Armit LJ, Alessi DR. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J. 22: 4202-4211, 2003. 73. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, Gout I, Downes CP, Lamb RF. The Tsc1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 166: 213-223, 2004. 74. Harrington LS, Findlay GM, Lamb RF. Restraining PI3K: mTOR signaling goes back to the membrane. Trends Biochem. Sci. 30: 35-42, 2005. 75. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66: 1500-1508, 2006. 76. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65: 7052-7058, 2005. 77. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ. PDGFRs are critical for PI3K/AKT activation and negatively regulated by mTOR. J Clin Invest. 117: 730-738, 2007. 78. Dann SG, Selvaraj A, Thomas G. mTOR complex1-S6K1 signalling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med. 13: 252-259, 2007. 79. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 118: 3065-3074, 2008. 80. Werzowa J, Cejka D, Fuereder T, Dekrout B, Thallinger C, Pehamberger H, Wacheck V, Pratscher B. Suppression of mTOR complex 2-dependent AKT phosphorylation in melanoma cells by combined treatment with rapamycin and LY294002. Br J Dermatol. 160: 955-64, 2009. 81. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 3: 211-20, 1992. 82. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845-8, 1992. 83. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-4, 1993. 84. Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ. Homologs of vascular endothelial growth factor are encoded by the poxvirus of virus. J Virol. 68: 84-92, 1994. 85. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6: 1677-83, 1991. 86. Sait SN, Dougher-Vermazen M, Shows TB, Terman BI. The kinase insert domain receptor gene (KDR) has been relocated to chromosome 4q11-->q12. Cytogenet Cell Genet. 70: 145-6, 1995. 87. Takahashi T, Shibuya M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 14: 2079-89, 1997. 88. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3''-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 273: 30336-43, 1998. 89. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem. 273: 13313-6, 1998. 90. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun. 264: 781-8, 1999. 91. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157-64, 1994. 92. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18: 882-92, 1999. 93. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 49: 568-81, 2001. 94. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18: 2221-30, 1999. 95. Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, Takagi H, Newsome WP, Jirousek MR, King GL. Characterization of vascular endothelial growth factor''s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest. 98: 2018-26, 1996. 96. Wellner M, Maasch C, Kupprion C, Lindschau C, Luft FC, Haller H. The proliferative effect of vascular endothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta. Arterioscler Thromb Vasc Biol. 19: 178-85, 1999. 97. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983-5, 1983. 98. Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat. 200: 581-97, 2002. 99. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A. 98: 2604-9, 2001. 100. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4: 915-24, 1999. 101. Becker PM, Waltenberger J, Yachechko R, Mirzapoiazova T, Sham JS, Lee CG, Elias JA, Verin AD. Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res. 96: 1257-65, 2005. 102. Holmqvist K, Cross MJ, Rolny C, Hägerkvist R, Rahimi N, Matsumoto T, Claesson-Welsh L, Welsh M. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem. 279: 22267-75, 2004. 103. Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, Wang L, Wikner C, Qi JH, Wernstedt C, Wu J, Bruheim S, Mugishima H, Mukhopadhyay D, Spurkland A, Claesson-Welsh L. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 24: 2342-53, 2005. 104. Lamalice L, Houle F, Jourdan G, Huot J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23: 434-45, 2004. 105. Dance M, Montagner A, Yart A, Masri B, Audigier Y, Perret B, Salles JP, Raynal P. The adaptor protein Gab1 couples the stimulation of vascular endothelial growth factor receptor-2 to the activation of phosphoinositide 3-kinase. J Biol Chem. 281: 23285-95, 2006. 106. Laramée M, Chabot C, Cloutier M, Stenne R, Holgado-Madruga M, Wong AJ, Royal I. The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem. 282: 7758-69, 2007. 107. Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc. Natl. Acad. Sci. U S A. 88: 9026-30, 1991. 108. Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NP, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835-46, 1993. 109. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118: 489-98, 1993. 110. Folkman J. Tumor angiogenesis. Adv Cancer Res. 43: 175-203, 1985. 111. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 3: 65-71, 1992. 112. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest. 84: 1470-8, 1989. 113. Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Mansea Van de Water L, Senger DR. Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med. 174: 1275-8, 1991. 114. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845-8, 1992. 115. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH. Platelet-derived growth factor-D overexpression contributes to epithelial mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26: 1425-35, 2008. 116. Higashikawa K, Yoneda S, Taki M, Shigeishi H, Ono S, Tobiume K, Kamata N. Gene expression profiling to identify genes associated with high-invasiveness in human squamous cell carcinoma with epithelial-to-mesenchymal transition. Cancer Lett. 264: 256-64, 2008. 117. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta., 2009. 118. Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest. 95: 1789-97, 1995. 119. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: 220-31, 2009. 120. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O''Reilly T. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 15: 1612-22, 2009. 121. Yang CC, Chu KC, Yeh WM. The expression of vasculas endothelial groeth factor in transitional cell carcinoma of urinary bladder is correlated with cancer progression. Urol Oncol. 22: 1-6, 2004. 122. Hattori K, Iida K, Joraku A, Tsukamoto S, Akaza H, Oyasu R. Chemopreventive effects of cyclooxygenase-2 inhibitor and epidermal growth factor-receptor kinsase inhibitor on rat urinary bladder carcinogenesis. BJU Int. 97: 640-643, 2006. 123. Gofrit ON, Birman T, Dinaburg A, Ayesh S, Ohana P, Hochberg A. Chemically induced bladder cancer- a sonographic and morphologic description. Urology 68: 231-235, 2006. 124. Yeager N, Brewer C, Cai KQ, Xu XX, Di Cristofano A. Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res. 68: 444-449, 2008. 125. Kobashigawa JA, Patel JK. Immunosuppression for heart transplantation: where are we now? Nat Clin Pract Cardiovasc Med. 3: 203-12, 2006. 126. Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 13: 2276-88, 2002. 127. Thomson CA, Rock CL, Giuliano AR, Newton TR, Cui H, Reid PM, Green TL, Alberts DS. Longitudinal changes in body weight and body composition among women previously treated for breast cancer consuming a high-vegetable, fruit and fiber, low-fat diet. Eur J Nutr. 44: 18-25, 2005.
摘要: 
尿路上皮癌 (urothelial carcinoma) , 又稱為泌尿道移形上皮細胞癌(transitional cell carcinoma),在台灣是一種常見的泌尿道癌症。在我們之前研究報告中指出,台灣的腎臟移植病人有較高比例會得到尿路上皮癌。目前有越來越多的證據顯示,rapamycin,一種mTOR (mammalian target of rapamycin) 的抑制劑,可以有效的降低腎臟移植後癌症發生的風險。國外的研究報告及台中榮總的臨床觀察發現,併用或單獨使用rapamycin 的腎移植患者,發生移植後惡性腫瘤的發生率 (含尿路上皮癌),明顯地比服用calcineurin 抑制劑低很多。目前的研究結果,我們確定rapamycin 對尿路上皮癌的抑制效果。In vitro 的實驗中,我們發現T24 細胞的侵犯性,會受到rapamycin 的影響。在wound scratch assay 和trans-well assay 中都證實了rapamycin 會有效的抑制T24 的細胞移動的能力。此外,我們利用0.05% BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine) 所誘發的大鼠尿路上皮癌模式來檢測rapamycin 的抗癌能力。尿路上皮癌的判讀,是利用組織染色在顯微鏡下做鏡檢, rapamycin 可以有效的降低BBN 所誘發的泌尿路上皮癌的發生。Rapamycin 同時可以抑制大鼠膀胱內血管內皮生長因子的分泌。綜合以上的實驗結果,我們提供了in vivo、in vitro 證據,證實了rapamycin 可以有效地減少尿路上皮癌的發生。
URI: http://hdl.handle.net/11455/20157
其他識別: U0005-0308200911202700
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.