Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20159
標題: Imiquimod對非皮膚癌細胞株之作用探討
The Effect of Imiquimod on Non-skin Tumor Cell Lines
作者: 蕭安恬
Hsiao, An-Tien
關鍵字: Imiquimod;非皮膚癌細胞株
出版社: 醫學科技研究所
引用: 參考文獻 Azad, M.B., Chen, Y., and Gibson, S.B. (2008). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal. Bath-Hextall, F., Bong, J., Perkins, W., and Williams, H. (2004). Interventions for basal cell carcinoma of the skin: systematic review. BMJ 329, 705. Beutner, K.R., Geisse, J.K., Helman, D., Fox, T.L., Ginkel, A., and Owens, M.L. (1999). Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol 41, 1002-1007. Burns, C.A., and Brown, M.D. (2005). Imiquimod for the treatment of skin cancer. Dermatol Clin 23, 151-164, vii. Burns, R.P., Jr., Ferbel, B., Tomai, M., Miller, R., and Gaspari, A.A. (2000). The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans'' cells. Clin Immunol 94, 13-23. Campos, C.B., Paim, B.A., Cosso, R.G., Castilho, R.F., Rottenberg, H., and Vercesi, A.E. (2006). Method for monitoring of mitochondrial cytochrome c release during cell death: Immunodetection of cytochrome c by flow cytometry after selective permeabilization of the plasma membrane. Cytometry A 69, 515-523. Chen, Y., Azad, M.B., and Gibson, S.B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16, 1040-1052. Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219. Delgado, M.A., and Deretic, V. (2009). Toll-like receptors in control of immunological autophagy. Cell Death Differ 16, 976-983. Delgado, M.A., Elmaoued, R.A., Davis, A.S., Kyei, G., and Deretic, V. (2008). Toll-like receptors control autophagy. EMBO J 27, 1110-1121. Eskelinen, E.L., and Saftig, P. (2009). Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793, 664-673. Fujioka, S., Shimomura, H., Iwasaki, Y., Fujio, K., Nakagawa, H., Onishi, Y., Takagi, S., Taniguchi, H., Umeoka, F., Nakajima, H., et al. (2003). Hepatitis B virus gene in liver tissue promotes hepatocellular carcinoma development in chronic hepatitis C patients. Dig Dis Sci 48, 1920-1924. Gibson, S.J., Imbertson, L.M., Wagner, T.L., Testerman, T.L., Reiter, M.J., Miller, R.L., and Tomai, M.A. (1995). Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res 15, 537-545. Hara, A., Hirose, Y., Yoshimi, N., Tanaka, T., and Mori, H. (1997). Expression of Bax and bcl-2 proteins, regulators of programmed cell death, in human brain tumors. Neurol Res 19, 623-628. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3, 196-200. Jaskiewicz, K., Van Helden, P.D., Wiid, I.J., Steenkamp, H.J., and Van Wyk, M.J. (1990). Chronic atrophic gastritis, gastric pH, nitrites and micronutrient levels in a population at risk for gastric carcinoma. Anticancer Res 10, 833-836. Jochova, J., Quaglino, D., Zakeri, Z., Woo, K., Sikorska, M., Weaver, V., and Lockshin, R.A. (1997). Protein synthesis, DNA degradation, and morphological changes during programmed cell death in labial glands of Manduca sexta. Dev Genet 21, 249-257. Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A.M., Wagner, H., Lipford, G., and Bauer, S. (2002). Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3, 499. Klionsky, D.J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Baba, M., Baehrecke, E.H., Bahr, B.A., Ballabio, A., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175. Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163. Kuan, N.K., and Passaro, E., Jr. (1998). Apoptosis: programmed cell death. Arch Surg 133, 773-775. Kwan, J.A., Schulze, C.J., Wang, W., Leon, H., Sariahmetoglu, M., Sung, M., Sawicka, J., Sims, D.E., Sawicki, G., and Schulz, R. (2004). Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18, 690-692. Lambert, L.A., Qiao, N., Hunt, K.K., Lambert, D.H., Mills, G.B., Meijer, L., and Keyomarsi, K. (2008). Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68, 7966-7974. Li, S., Zhao, Y., He, X., Kim, T.H., Kuharsky, D.K., Rabinowich, H., Chen, J., Du, C., and Yin, X.M. (2002). Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277, 26912-26920. Liston, P., Young, S.S., Mackenzie, A.E., and Korneluk, R.G. (1997). Life and death decisions: the role of the IAPs in modulating programmed cell death. Apoptosis 2, 423-441. Lok, A.S. (2009). Hepatitis B: Liver fibrosis and hepatocellular carcinoma. Gastroenterol Clin Biol. Lum, J.J., DeBerardinis, R.J., and Thompson, C.B. (2005). Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6, 439-448. Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741-752. Markham, T., Mathews, C., Rogers, S., Mullan, R., Bresnihan, B., Fitzgerald, O., Veale, D.J., and Fearon, U. (2006). Downregulation of the inhibitor of apoptosis protein survivin in keratinocytes and endothelial cells in psoriasis skin following infliximab therapy. Br J Dermatol 155, 1191-1196. Megyeri, K., Au, W.C., Rosztoczy, I., Raj, N.B., Miller, R.L., Tomai, M.A., and Pitha, P.M. (1995). Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol Cell Biol 15, 2207-2218. Melendez, A., and Neufeld, T.P. (2008). The cell biology of autophagy in metazoans: a developing story. Development 135, 2347-2360. Miller, R.L., Gerster, J.F., Owens, M.L., Slade, H.B., and Tomai, M.A. (1999). Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol 21, 1-14. Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216. Onyemelukwe, G.C., Ogbadu, G.H., and Salifu, A. (1982). Aflatoxins, B1, B2, G1, G2 in primary liver cell carcinoma. Toxicol Lett 10, 309-312. Paglin, S., Hollister, T., Delohery, T., Hackett, N., McMahill, M., Sphicas, E., Domingo, D., and Yahalom, J. (2001). A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61, 439-444. Philbin, V.J., and Levy, O. (2007). Immunostimulatory activity of Toll-like receptor 8 agonists towards human leucocytes: basic mechanisms and translational opportunities. Biochem Soc Trans 35, 1485-1491. Reiter, M.J., Testerman, T.L., Miller, R.L., Weeks, C.E., and Tomai, M.A. (1994). Cytokine induction in mice by the immunomodulator imiquimod. J Leukoc Biol 55, 234-240. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O., and Klionsky, D.J. (2007). Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6, 304-312. Sakurai, M. (1978). Liver cell dysplasia and hepatitis B surface and core antigens in cirrhosis and hepatocellular carcinoma of autopsy cases. Acta Pathol Jpn 28, 705-719. Schon, M.P., and Schon, M. (2004). Immune modulation and apoptosis induction: two sides of the antitumoral activity of imiquimod. Apoptosis 9, 291-298. Schon, M.P., Schon, M., and Klotz, K.N. (2006). The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol 126, 1338-1347. Sewell, J.L., Stick, K.M., and Monto, A. (2009). Hepatocellular carcinoma after sustained virologic response in hepatitis C patients without cirrhosis on a pretreatment liver biopsy. Eur J Gastroenterol Hepatol 21, 225-229. Sidbury, R., Neuschler, N., Neuschler, E., Sun, P., Wang, X.Q., Miller, R., Tomai, M., Puscasiu, E., Gugneja, S., and Paller, A.S. (2003). Topically applied imiquimod inhibits vascular tumor growth in vivo. J Invest Dermatol 121, 1205-1209. Smith, C.A., Williams, G.T., Kingston, R., Jenkinson, E.J., and Owen, J.J. (1989). Apoptosis. Nature 338, 10. Smith, E.B., Schwartz, M., Kawamoto, H., You, X., Hwang, D., Liu, H., and Scherr, D.S. (2007). Antitumor effects of imidazoquinolines in urothelial cell carcinoma of the bladder. J Urol 177, 2347-2351. Stockfleth, E., Meyer, T., Benninghoff, B., and Christophers, E. (2001). Successful treatment of actinic keratosis with imiquimod cream 5%: a report of six cases. Br J Dermatol 144, 1050-1053. Suzuki, H., Wang, B., Shivji, G.M., Toto, P., Amerio, P., Tomai, M.A., Miller, R.L., and Sauder, D.N. (2000). Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 114, 135-141. Tinel, A., Janssens, S., Lippens, S., Cuenin, S., Logette, E., Jaccard, B., Quadroni, M., and Tschopp, J. (2007). Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 26, 197-208. Tsujimoto, Y., and Shimizu, S. (2005). Another way to die: autophagic programmed cell death. Cell Death Differ 12 Suppl 2, 1528-1534. Tyring, S. (2001). Imiquimod applied topically: A novel immune response modifier. Skin Therapy Lett 6, 1-4. Urosevic, M., and Dummer, R. (2004). Role of imiquimod in skin cancer treatment. Am J Clin Dermatol 5, 453-458. Vousden, K.H., and Lane, D.P. (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8, 275-283. Wang, Y., Abel, K., Lantz, K., Krieg, A.M., McChesney, M.B., and Miller, C.J. (2005). The Toll-like receptor 7 (TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines but do not prevent vaginal transmission of simian immunodeficiency virus when applied intravaginally to rhesus macaques. J Virol 79, 14355-14370. Werner, A.B., Tait, S.W., de Vries, E., Eldering, E., and Borst, J. (2004). Requirement for aspartate-cleaved bid in apoptosis signaling by DNA-damaging anti-cancer regimens. J Biol Chem 279, 28771-28780. Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., and Lenardo, M. (2006). Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A 103, 4952-4957. Zhuang, J., and Brady, H.J. (2006). Emerging role of Mcl-1 in actively counteracting BH3-only proteins in apoptosis. Cell Death Differ 13, 1263-1267.
摘要: 
Imiquimod(1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine),為一種免疫反應調節劑,能透過和免疫細胞上的Toll-like receptor 7的結合,啟動受體下游訊息傳遞反應,誘使免疫細胞分泌細胞激素,達到抑制病毒或腫瘤的效果。在臨床上已被廣泛用於治療菜花(尖銳濕疣,生殖器疣,性病疣),以及治療淺表型基底細胞癌和光化性角化病,是目前皮膚癌主要局部外用藥。除了調節免疫的作用之外,也有研究指出,imiquimod也會造成黑色素細胞癌的粒線體外膜通透性增加,釋放細胞色素c活化下游的caspase 9、caspase 3 直接誘導黑色素細胞癌進行細胞凋亡。本實驗即是利用AGS、HepG2、A549、T24等非皮膚腫瘤細胞,觀察imiquimod對其產生的反應。本研究證實imiquimod會直接誘導AGS、HepG2、A549進行細胞凋亡,同時發現細胞凋亡並不是imiquimod誘導腫瘤細胞死亡的唯一路徑。我們在實驗中發現imiquimod也會誘導細胞走向細胞自噬。細胞自噬的產生是當細胞遭受壓力時,細胞進行求生的路徑,但若當細胞透過細胞自噬仍無法存活時,則細胞便會走向第二型的細胞死亡。在我們的實驗裡,受imiquimod刺激的A549和T24細胞中均可觀察到細胞在進行細胞自噬時的重要特徵,LC3-I蛋白質轉換變成LC3-II,以及細胞質中有酸性自噬囊泡的產生。綜合這些結果得知,imiquimod會誘導AGS、HepG2細胞進行細胞凋亡。A549細胞經過imiquimod刺激後,會同時有細胞凋亡及細胞自噬的情形產生。另外imiquimod對於T24細胞的影響則是偏向誘導細胞進行細胞自噬的路徑。證實imiquimod作用於不同的腫瘤細胞株上,會誘導不同的作用機轉。並且在imiquimod的刺激下,細胞自噬對腫瘤細胞而言可能為一個抵抗細胞凋亡的保護機制。

Imiquimod(1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine), an immune response modifier, has potent antitumor activity. Imiquimod induces local production of cytokines through the interaction with Toll-like receptor 7 on immune cells. It shows clinical efficacy against several benign and malignant skin lesions, including actinic keratosis and basal cell carcinoma. In addition to the effects of immune modulation, imiquimod had been reported to possess considerable proapopotic activity against melanoma cells, mediated through Bcl-2-dependent release mitochondrial cytochrome c and subsequent activation of caspase 3 and caspase 9. In this study, we examined the imiquimod-induced cell death in different cancer cell lines. We discovered that imiquimod induced cell apoptosis and decreased the level of anti-apoptotic proteins in AGS and HepG2 cells. However, the percentage of sub-G1 cells showed no significant difference in A549 and T24 cells after imiquimod treatment. We show here that apoptosis is not the only mechanism of cell death caused by imiquimod. Autophagy may be a mechanism of stress-adaption by which the cell is trying to survive. We observed that imiquimod induce autophagy, indicated by LC3-I converted to LC3-II and developed cytoplasmic acridic orange (AO) AO puncta in A549 and T24 cells. In addition, imiquimod induced caspase 3 activetion in A549. Taken together, we observed that imiquimod induce both autophagy and apoptosis in A549 cells. However, only autophagy is significantly increased in the T24 upon imiquimod insults. Thus, the imiquimod may have differential effects on different cancer cell lines, and autophagy may be an important protective mechanism in specific cancer cells which have the ability to resistant imiquimod-induced apoptosis.
URI: http://hdl.handle.net/11455/20159
其他識別: U0005-1708200918295000
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.