Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20170
DC FieldValueLanguage
dc.contributor林季千zh_TW
dc.contributorChi-Chen Linen_US
dc.contributor關宇翔zh_TW
dc.contributorYu-Hsiang Kuanen_US
dc.contributor.advisor陳春榮zh_TW
dc.contributor.advisorChun-Jung Chenen_US
dc.contributor.author周明論zh_TW
dc.contributor.authorChou, Ming-Lunen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T07:12:00Z-
dc.date.available2014-06-06T07:12:00Z-
dc.identifierU0005-1411201110550200zh_TW
dc.identifier.citation1. Abbott, N.J., Ronnback, L., Hansson, E., 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7, 41-53. 2. Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A., 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738. 3. Ali, F., Sultana, S., 2011. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol Cell Biochem. 4. Alvarez, S., Serramia, M.J., Fresno, M., Munoz-Fernandez, M., 2005. Human immunodeficiency virus type 1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in neuroblastoma cells through a nuclear factor-kappaB and activating protein-1 mediated mechanism. J Neurochem 94, 850-861. 5. Amodio, P., De Toni, E.N., Cavalletto, L., Mapelli, D., Bernardinello, E., Del Piccolo, F., Bergamelli, C., Costanzo, R., Bergamaschi, F., Poma, S.Z., Chemello, L., Gatta, A., Perini, G., 2005. Mood, cognition and EEG changes during interferon alpha (alpha-IFN) treatment for chronic hepatitis C. J Affect Disord 84, 93-98. 6. Anders, H.J., Lichtnekert, J., Allam, R., 2010. Interferon-alpha and -beta in kidney inflammation. Kidney Int 77, 848-854. 7. Anderson, C.M., Nedergaard, M., 2003. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26, 340-344; author reply 344-345. 8. Ano, Y., Sakudo, A., Kimata, T., Uraki, R., Sugiura, K., Onodera, T., 2010. Oxidative damage to neurons caused by the induction of microglial NADPH oxidase in encephalomyocarditis virus infection. Neurosci Lett 469, 39-43. 9. Aoki, N., Matsuda, T., 2000. A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J Biol Chem 275, 39718-39726. 10. Arias, C.F., Preugschat, F., Strauss, J.H., 1993. Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193, 888-899. 11. Arvin, B., Neville, L.F., Barone, F.C., Feuerstein, G.Z., 1996. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20, 445-452. 12. Asselin-Paturel, C., Boonstra, A., Dalod, M., Durand, I., Yessaad, N., Dezutter-Dambuyant, C., Vicari, A., O''Garra, A., Biron, C., Briere, F., Trinchieri, G., 2001. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2, 1144-1150. 13. Audige, A., Hofer, U., Dittmer, U., Broek, M.V., Speck, R.F., 2011. Evaluation of the Immunomodulatory and Antiviral Effects of the Cytokine Combination IFN-alpha and IL-7 in the Lymphocytic Choriomeningitis Virus and Friend Retrovirus Mouse Infection Models. Viral Immunol. 14. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Jacob Filho, W., Lent, R., Herculano-Houzel, S., 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513, 532-541. 15. Baker, C.V., Bronner-Fraser, M., 1997. The origins of the neural crest. Part I: embryonic induction. Mech Dev 69, 3-11. 16. Baldwin, A.S., Jr., 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14, 649-683. 17. Barchet, W., Cella, M., Odermatt, B., Asselin-Paturel, C., Colonna, M., Kalinke, U., 2002. Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. J Exp Med 195, 507-516. 18. Barnes, B., Lubyova, B., Pitha, P.M., 2002. On the role of IRF in host defense. J Interferon Cytokine Res 22, 59-71. 19. Baumann, N., Pham-Dinh, D., 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81, 871-927. 20. Bedard, K., Krause, K.H., 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313. 21. Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., Canard, B., 2004. The RNA helicase, nucleotide 5''-triphosphatase, and RNA 5''-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208-218. 22. Bente, D.A., Alimonti, J.B., Shieh, W.J., Camus, G., Stroher, U., Zaki, S., Jones, S.M., 2010. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol 84, 11089-11100. 23. Best, S.M., Morris, K.L., Shannon, J.G., Robertson, S.J., Mitzel, D.N., Park, G.S., Boer, E., Wolfinbarger, J.B., Bloom, M.E., 2005. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79, 12828-12839. 24. Bignami, A., Eng, L.F., Dahl, D., Uyeda, C.T., 1972. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43, 429-435. 25. Binukumar, B.K., Bal, A., Gill, K.D., 2011. Chronic Dichlorvos Exposure: Microglial Activation, Proinflammatory Cytokines and Damage to Nigrostriatal Dopaminergic System. Neuromolecular Med. 26. Biswas, S.M., Kar, S., Singh, R., Chakraborty, D., Vipat, V., Raut, C.G., Mishra, A.C., Gore, M.M., Ghosh, D., 2010. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. J Med Virol 82, 304-310. 27. Borrow, P., Martinez-Sobrido, L., de la Torre, J.C., 2010. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2, 2443-2480. 28. Bouchonnet, F., Boechat, N., Bonay, M., Hance, A.J., 2002. Alpha/beta interferon impairs the ability of human macrophages to control growth of Mycobacterium bovis BCG. Infect Immun 70, 3020-3025. 29. Brehin, A.C., Casademont, I., Frenkiel, M.P., Julier, C., Sakuntabhai, A., Despres, P., 2009. The large form of human 2'',5''-Oligoadenylate Synthetase (OAS3) exerts antiviral effect against Chikungunya virus. Virology 384, 216-222. 30. Burke, D.S., Morill, J.C., 1987. Levels of interferon in the plasma and cerebrospinal fluid of patients with acute Japanese encephalitis. J Infect Dis 155, 797-799. 31. Chambers, T.J., Hahn, C.S., Galler, R., Rice, C.M., 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649-688. 32. Chan, Y.L., Chang, T.H., Liao, C.L., Lin, Y.L., 2008. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells. J Virol 82, 10455-10464. 33. Chang, T.H., Liao, C.L., Lin, Y.L., 2006. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect 8, 157-171. 34. Chang, Y.S., Liao, C.L., Tsao, C.H., Chen, M.C., Liu, C.I., Chen, L.K., Lin, Y.L., 1999. Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol 73, 6257-6264. 35. Charoenthongtrakul, S., Zhou, Q., Shembade, N., Harhaj, N.S., Harhaj, E.W., 2011. Human T cell leukemia virus type 1 Tax inhibits innate antiviral signaling via NF-kappaB-dependent induction of SOCS1. J Virol 85, 6955-6962. 36. Chen, C.J., Chen, J.H., Chen, S.Y., Liao, S.L., Raung, S.L., 2004. Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. J Virol 78, 12107-12119. 37. Chen, C.J., Liao, S.L., Kuo, M.D., Wang, Y.M., 2000. Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport 11, 1933-1937. 38. Chen, C.J., Ou, Y.C., Chang, C.Y., Pan, H.C., Liao, S.L., Raung, S.L., Chen, S.Y., 2011. TNF-alpha and IL-1beta mediate Japanese encephalitis virus-induced RANTES gene expression in astrocytes. Neurochem Int 58, 234-242. 39. Chen, C.J., Ou, Y.C., Lin, S.Y., Raung, S.L., Liao, S.L., Lai, C.Y., Chen, S.Y., Chen, J.H., 2010. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol 91, 1028-1037. 40. Chen, L.K., Lin, Y.L., Liao, C.L., Lin, C.G., Huang, Y.L., Yeh, C.T., Lai, S.C., Jan, J.T., Chin, C., 1996. Generation and characterization of organ-tropism mutants of Japanese encephalitis virus in vivo and in vitro. Virology 223, 79-88. 41. Chen, R.A., Ryzhakov, G., Cooray, S., Randow, F., Smith, G.L., 2008. Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4, e22. 42. Cho, B.P., Song, D.Y., Sugama, S., Shin, D.H., Shimizu, Y., Kim, S.S., Kim, Y.S., Joh, T.H., 2006. Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53, 92-102. 43. Chopy, D., Pothlichet, J., Lafage, M., Megret, F., Fiette, L., Si-Tahar, M., Lafon, M., 2011. Ambivalent role of the innate immune response in rabies virus pathogenesis. J Virol 85, 6657-6668. 44. Christensen, J.R., Larsen, K.B., Lisanby, S.H., Scalia, J., Arango, V., Dwork, A.J., Pakkenberg, B., 2007. Neocortical and hippocampal neuron and glial cell numbers in the rhesus monkey. Anat Rec (Hoboken) 290, 330-340. 45. Chu, P.W., Westaway, E.G., 1985. Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140, 68-79. 46. Chung, C.D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., Shuai, K., 1997. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805. 47. Chung, K.M., Liszewski, M.K., Nybakken, G., Davis, A.E., Townsend, R.R., Fremont, D.H., Atkinson, J.P., Diamond, M.S., 2006. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 103, 19111-19116. 48. Cleaves, G.R., Dubin, D.T., 1979. Methylation status of intracellular dengue type 2 40 S RNA. Virology 96, 159-165. 49. Clum, S., Ebner, K.E., Padmanabhan, R., 1997. Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. J Biol Chem 272, 30715-30723. 50. Colasanti, M., Persichini, T., Di Pucchio, T., Gremo, F., Lauro, G.M., 1995. Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor alpha stimulation. Neurosci Lett 200, 144-146. 51. Colton, C.A., Gilbert, D.L., 1987. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223, 284-288. 52. Crow, M.K., 2010. Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther 12 Suppl 1, S5. 53. D''Addario, M., Libermann, T.A., Xu, J., Ahmad, A., Menezes, J., 2001. Epstein-Barr Virus and its glycoprotein-350 upregulate IL-6 in human B-lymphocytes via CD21, involving activation of NF-kappaB and different signaling pathways. J Mol Biol 308, 501-514. 54. Dal Canto, M.C., 1997. Mechanisms of HIV infection of the central nervous system and pathogenesis of AIDS-dementia complex. Neuroimaging Clin N Am 7, 231-241. 55. Darnell, J.E., Jr., Kerr, I.M., Stark, G.R., 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421. 56. Das, S., Dutta, K., Kumawat, K.L., Ghoshal, A., Adhya, D., Basu, A., 2011. Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis. PLoS One 6, e17225. 57. Das, S., Ghosh, D., Basu, A., 2009. Japanese encephalitis virus induce immuno-competency in neural stem/progenitor cells. PLoS One 4, e8134. 58. David, M., Chen, H.E., Goelz, S., Larner, A.C., Neel, B.G., 1995. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 15, 7050-7058. 59. Dedoni, S., Olianas, M.C., Onali, P., 2010. Interferon-beta induces apoptosis in human SH-SY5Y neuroblastoma cells through activation of JAK-STAT signaling and down-regulation of PI3K/Akt pathway. J Neurochem 115, 1421-1433. 60. Delhaye, S., Paul, S., Blakqori, G., Minet, M., Weber, F., Staeheli, P., Michiels, T., 2006. Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci U S A 103, 7835-7840. 61. Deng, W., Aimone, J.B., Gage, F.H., 2010. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11, 339-350. 62. Desai, A., Shankar, S.K., Ravi, V., Chandramuki, A., Gourie-Devi, M., 1995. Japanese encephalitis virus antigen in the human brain and its topographic distribution. Acta Neuropathol 89, 368-373. 63. Doly, J., Civas, A., Navarro, S., Uze, G., 1998. Type I interferons: expression and signalization. Cell Mol Life Sci 54, 1109-1121. 64. Droebner, K., Klein, B., Paxian, S., Schmid, R., Stitz, L., Planz, O., 2010. The alternative NF-kappaB signalling pathway is a prerequisite for an appropriate immune response against lymphocytic choriomeningitis virus infection. Viral Immunol 23, 295-308. 65. Edmondson, J.C., Hatten, M.E., 1987. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci 7, 1928-1934. 66. Eglitis, M.A., Mezey, E., 1997. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94, 4080-4085. 67. Egloff, M.P., Benarroch, D., Selisko, B., Romette, J.L., Canard, B., 2002. An RNA cap (nucleoside-2''-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo J 21, 2757-2768. 68. Espinosa-Oliva, A.M., de Pablos, R.M., Villaran, R.F., Arguelles, S., Venero, J.L., Machado, A., Cano, J., 2011. Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiol Aging 32, 85-102. 69. Esteban, M., 2009. Hepatitis C and evasion of the interferon system: a PKR paradigm. Cell Host Microbe 6, 495-497. 70. Falgout, B., Pethel, M., Zhang, Y.M., Lai, C.J., 1991. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65, 2467-2475. 71. Fetler, L., Amigorena, S., 2005. Neuroscience. Brain under surveillance: the microglia patrol. Science 309, 392-393. 72. Fields, R.D., Stevens, B., 2000. ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23, 625-633. 73. Fitzgerald, K.A., 2011. The interferon inducible gene: Viperin. J Interferon Cytokine Res 31, 131-135. 74. Fredericksen, B., Akkaraju, G.R., Foy, E., Wang, C., Pflugheber, J., Chen, Z.J., Gale, M., Jr., 2002. Activation of the interferon-beta promoter during hepatitis C virus RNA replication. Viral Immunol 15, 29-40. 75. Fredericksen, B.L., Smith, M., Katze, M.G., Shi, P.Y., Gale, M., Jr., 2004. The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78, 7737-7747. 76. Gajanana, A., Rajendran, R., Samuel, P.P., Thenmozhi, V., Tsai, T.F., Kimura-Kuroda, J., Reuben, R., 1997. Japanese encephalitis in south Arcot district, Tamil Nadu, India: a three-year longitudinal study of vector abundance and infection frequency. J Med Entomol 34, 651-659. 77. Garaigorta, U., Chisari, F.V., 2009. Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation. Cell Host Microbe 6, 513-522. 78. German, A.C., Myint, K.S., Mai, N.T., Pomeroy, I., Phu, N.H., Tzartos, J., Winter, P., Collett, J., Farrar, J., Barrett, A., Kipar, A., Esiri, M.M., Solomon, T., 2006. A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 100, 1135-1145. 79. Ghosh, D., Basu, A., 2009. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl Trop Dis 3, e437. 80. Ghosh, S., May, M.J., Kopp, E.B., 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225-260. 81. Ghoshal, A., Das, S., Ghosh, S., Mishra, M.K., Sharma, V., Koli, P., Sen, E., Basu, A., 2007. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55, 483-496. 82. Gilfoy, F.D., Mason, P.W., 2007. West Nile virus-induced interferon production is mediated by the double-stranded RNA-dependent protein kinase PKR. J Virol 81, 11148-11158. 83. Giordano, G., van den Brule, S., Lo Re, S., Triqueneaux, P., Uwambayinema, F., Yakoub, Y., Couillin, I., Ryffel, B., Michiels, T., Renauld, J.C., Lison, D., Huaux, F., 2010. Type I interferon signaling contributes to chronic inflammation in a murine model of silicosis. Toxicol Sci 116, 682-692. 84. Gisselbrecht, S., 1999. The CIS/SOCS proteins: a family of cytokine-inducible regulators of signaling. Eur Cytokine Netw 10, 463-470. 85. Goeb, J.L., Even, C., Nicolas, G., Gohier, B., Dubas, F., Garre, J.B., 2006. Psychiatric side effects of interferon-beta in multiple sclerosis. Eur Psychiatry 21, 186-193. 86. Goodman, A.G., Zeng, H., Proll, S.C., Peng, X., Cilloniz, C., Carter, V.S., Korth, M.J., Tumpey, T.M., Katze, M.G., 2010. The alpha/beta interferon receptor provides protection against influenza virus replication but is dispensable for inflammatory response signaling. J Virol 84, 2027-2037. 87. Gupta, N., Rao, P.V., 2011. Transcriptomic profile of host response in Japanese encephalitis virus infection. Virol J 8, 92. 88. Guyatt, K.J., Westaway, E.G., Khromykh, A.A., 2001. Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 92, 37-44. 89. Halstead, S.B., Grosz, C.R., 1962. Subclinical Japanese encephalitis. I. Infection of Americans with limited residence in Korea. Am J Hyg 75, 190-201. 90. Hang do, T.T., Song, J.Y., Kim, M.Y., Park, J.W., Shin, Y.K., 2011. Involvement of NF-kappaB in changes of IFN-gamma-induced CIITA/MHC-II and iNOS expression by influenza virus in macrophages. Mol Immunol 48, 1253-1262. 91. Harinasuta, C., Nimmanitya, S., Titsyakorn, U., 1985. The effect of interferon-alpha A on two cases of Japanese encephalitis in Thailand. Southeast Asian J Trop Med Public Health 16, 332-336. 92. Harinasuta, C., Wasi, C., Vithanomsat, S., 1984. The effect of interferon on Japanese encephalitis virus in vitro. Southeast Asian J Trop Med Public Health 15, 564-568. 93. Hartwig, D., Schutte, C., Warnecke, J., Dorn, I., Hennig, H., Kirchner, H., Schlenke, P., 2006. The large form of ADAR 1 is responsible for enhanced hepatitis delta virus RNA editing in interferon-alpha-stimulated host cells. J Viral Hepat 13, 150-157. 94. Hase, T., Summers, P.L., Eckels, K.H., Baze, W.B., 1987. Maturation process of Japanese encephalitis virus in cultured mosquito cells in vitro and mouse brain cells in vivo. Arch Virol 96, 135-151. 95. Hasegawa, H., Satake, Y., Kobayashi, Y., 1990. Effect of cytokines on Japanese encephalitis virus production by human monocytes. Microbiol Immunol 34, 459-466. 96. Hassan, M., Selimovic, D., Ghozlan, H., Abdel-Kader, O., 2007. Induction of high-molecular-weight (HMW) tumor necrosis factor(TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-kappaB-dependent activation. Cell Signal 19, 301-311. 97. Heinz, F.X., Allison, S.L., 2003. Flavivirus structure and membrane fusion. Adv Virus Res 59, 63-97. 98. Helbig, K.J., Lau, D.T., Semendric, L., Harley, H.A., Beard, M.R., 2005. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 42, 702-710. 99. Herbeuval, J.P., Shearer, G.M., 2007. HIV-1 immunopathogenesis: how good interferon turns bad. Clin Immunol 123, 121-128. 100. Herrup, K., Yang, Y., 2007. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8, 368-378. 101. Hertz, L., 2011. Astrocytic energy metabolism and glutamate formation - relevance for (13)C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging. 102. Hinson, V.K., Tyor, W.R., 2001. Update on viral encephalitis. Curr Opin Neurol 14, 369-374. 103. Honda, K., Yanai, H., Takaoka, A., Taniguchi, T., 2005. Regulation of the type I IFN induction: a current view. Int Immunol 17, 1367-1378. 104. Hsiao, N.W., Chen, J.W., Yang, T.C., Orloff, G.M., Wu, Y.Y., Lai, C.H., Lan, Y.C., Lin, C.W., 2010. ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells. Antiviral Res 85, 504-511. 105. Hsieh, Y.C., Mounsey, R.B., Teismann, P., 2011. MPP(+)-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 384, 157-167. 106. Hsu, L.C., Wu, Y.C., Lin, S.R., King, C.C., Ho, M.S., Lu, C.F., Hsu, H.M., Chen, K.T., Horng, C.B., 1997. [Seroepidemiology of Japanese encephalitis viral infection among 3-6 years old children from mountainous and plains townships located in the northern, central, southern and eastern Taiwan]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 30, 194-206. 107. Hunot, S., Vila, M., Teismann, P., Davis, R.J., Hirsch, E.C., Przedborski, S., Rakic, P., Flavell, R.A., 2004. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson''s disease. Proc Natl Acad Sci U S A 101, 665-670. 108. Huy, B.V., Tu, H.C., Luan, T.V., Lindqvist, R., 1994. Early mental and neurological sequelae after Japanese B encephalitis. Southeast Asian J Trop Med Public Health 25, 549-553. 109. Innis, B.L., Nisalak, A., Nimmannitya, S., Kusalerdchariya, S., Chongswasdi, V., Suntayakorn, S., Puttisri, P., Hoke, C.H., 1989. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 40, 418-427. 110. Jackson, P.K., 2001. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev 15, 3053-3058. 111. Jan, L.R., Yueh, Y.Y., Wu, Y.C., Horng, C.B., Wang, G.R., 2000. Genetic variation of Japanese encephalitis virus in Taiwan. Am J Trop Med Hyg 62, 446-452. 112. Jayandharan, G.R., Aslanidi, G., Martino, A.T., Jahn, S.C., Perrin, G.Q., Herzog, R.W., Srivastava, A., 2011. Activation of the NF-kappaB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. Proc Natl Acad Sci U S A 108, 3743-3748. 113. Jeohn, G.H., Cooper, C.L., Wilson, B., Chang, R.C., Jang, K.J., Kim, H.C., Liu, B., Hong, J.S., 2002. p38 MAP kinase is involved in lipopolysaccharide-induced dopaminergic neuronal cell death in rat mesencephalic neuron-glia cultures. Ann N Y Acad Sci 962, 332-346. 114. Jinno-Oue, A., Wilt, S.G., Hanson, C., Dugger, N.V., Hoffman, P.M., Masuda, M., Ruscetti, S.K., 2003. Expression of inducible nitric oxide synthase and elevation of tyrosine nitration of a 32-kilodalton cellular protein in brain capillary endothelial cells from rats infected with a neuropathogenic murine leukemia virus. J Virol 77, 5145-5151. 115. Johnson, M.A., Weick, J.P., Pearce, R.A., Zhang, S.C., 2007. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27, 3069-3077. 116. Johnstone, M., Gearing, A.J., Miller, K.M., 1999. A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 93, 182-193. 117. Juang, Y.T., Lowther, W., Kellum, M., Au, W.C., Lin, R., Hiscott, J., Pitha, P.M., 1998. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc Natl Acad Sci U S A 95, 9837-9842. 118. Kabilan, L., Vrati, S., Ramesh, S., Srinivasan, S., Appaiahgari, M.B., Arunachalam, N., Thenmozhi, V., Kumaravel, S.M., Samuel, P.P., Rajendran, R., 2004. Japanese encephalitis virus (JEV) is an important cause of encephalitis among children in Cuddalore district, Tamil Nadu, India. J Clin Virol 31, 153-159. 119. Katze, M.G., He, Y., Gale, M., Jr., 2002. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675-687. 120. Kawanokuchi, J., Mizuno, T., Kato, H., Mitsuma, N., Suzumura, A., 2004. Effects of interferon-beta on microglial functions as inflammatory and antigen presenting cells in the central nervous system. Neuropharmacology 46, 734-742. 121. Kennedy, P.G., Lisak, R.P., Raff, M.C., 1980. Cell type-specific markers for human glial and neuronal cells in culture. Lab Invest 43, 342-351. 122. Khorooshi, R., Owens, T., 2010. Injury-induced type I IFN signaling regulates inflammatory responses in the central nervous system. J Immunol 185, 1258-1264. 123. Kile, B.T., Alexander, W.S., 2001. The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci 58, 1627-1635. 124. Kim, S.U., de Vellis, J., 2005. Microglia in health and disease. J Neurosci Res 81, 302-313. 125. Kisseleva, T., Bhattacharya, S., Braunstein, J., Schindler, C.W., 2002. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1-24. 126. Konishi, E., Sakai, Y., Kitai, Y., Yamanaka, A., 2009. Prevalence of antibodies to Japanese encephalitis virus among inhabitants in Java Island, Indonesia, with a small pig population. Am J Trop Med Hyg 80, 856-861. 127. Krebs, D.L., Hilton, D.J., 2001. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378-387. 128. Kuhn, P.L., Petroulakis, E., Zazanis, G.A., McKinnon, R.D., 1995. Motor function analysis of myelin mutant mice using a rotarod. Int J Dev Neurosci 13, 715-722. 129. Kumar, R., Mathur, A., Singh, K.B., Sitholey, P., Prasad, M., Shukla, R., Agarwal, S.P., Arockiasamy, J., 1993. Clinical sequelae of Japanese encephalitis in children. Indian J Med Res 97, 9-13. 130. Kurane, I., Ennis, F.A., 1987. Induction of interferon alpha from human lymphocytes by autologous, dengue virus-infected monocytes. J Exp Med 166, 999-1010. 131. Kurane, I., Ennis, F.A., 1988. Production of interferon alpha by dengue virus-infected human monocytes. J Gen Virol 69 ( Pt 2), 445-449. 132. Kurane, I., Innis, B.L., Nimmannitya, S., Nisalak, A., Meager, A., Ennis, F.A., 1993. High levels of interferon alpha in the sera of children with dengue virus infection. Am J Trop Med Hyg 48, 222-229. 133. Kushner, D.B., Lindenbach, B.D., Grdzelishvili, V.Z., Noueiry, A.O., Paul, S.M., Ahlquist, P., 2003. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci U S A 100, 15764-15769. 134. Lafon, M., Prehaud, C., Megret, F., Lafage, M., Mouillot, G., Roa, M., Moreau, P., Rouas-Freiss, N., Carosella, E.D., 2005. Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 79, 15226-15237. 135. Lane, J.H., Sasseville, V.G., Smith, M.O., Vogel, P., Pauley, D.R., Heyes, M.P., Lackner, A.A., 1996. Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neurovirol 2, 423-432. 136. Lauer, G.M., Walker, B.D., 2001. Hepatitis C virus infection. N Engl J Med 345, 41-52. 137. Lawson, L.J., Perry, V.H., Dri, P., Gordon, S., 1990. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151-170. 138. Lee, H., Park, C., Cho, I.H., Kim, H.Y., Jo, E.K., Lee, S., Kho, H.S., Choi, S.Y., Oh, S.B., Park, K., Kim, J.S., Lee, S.J., 2007. Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia 55, 712-722. 139. Lee, J.G., Lee, S.H., Park, D.W., Yoon, H.S., Chin, B.R., Kim, J.H., Kim, J.R., Baek, S.H., 2008. Toll-like receptor 9-stimulated monocyte chemoattractant protein-1 is mediated via JNK-cytosolic phospholipase A2-ROS signaling. Cell Signal 20, 105-111. 140. Lee, S.C., Dickson, D.W., Liu, W., Brosnan, C.F., 1993. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46, 19-24. 141. Lee, S.C., Liu, W., Dickson, D.W., Brosnan, C.F., 1995. In human fetal astrocytes exposure to interleukin-1 beta stimulates acquisition of the GD3+ phenotype and inhibits cell division. J Neurochem 64, 1800-1807. 142. Leung, J.Y., Pijlman, G.P., Kondratieva, N., Hyde, J., Mackenzie, J.M., Khromykh, A.A., 2008. Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82, 4731-4741. 143. Levy, D.E., Darnell, J.E., Jr., 2002. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3, 651-662. 144. Levy, D.E., Marie, I., Smith, E., Prakash, A., 2002. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J Interferon Cytokine Res 22, 87-93. 145. Li, J., Baud, O., Vartanian, T., Volpe, J.J., Rosenberg, P.A., 2005. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102, 9936-9941. 146. Li, M.H., Fu, S.H., Chen, W.X., Wang, H.Y., Guo, Y.H., Liu, Q.Y., Li, Y.X., Luo, H.M., Da, W., Duo Ji, D.Z., Ye, X.M., Liang, G.D., 2011a. Genotype v Japanese encephalitis virus is emerging. PLoS Negl Trop Dis 5, e1231. 147. Li, P., Zheng, Q.S., Wang, Q., Li, Y., Wang, E.X., Liu, J.J., Cao, R.B., Chen, P.Y., 2008. Immune responses of recombinant adenoviruses expressing immunodominant epitopes against Japanese encephalitis virus. Vaccine 26, 5802-5807. 148. Li, Q., Verma, I.M., 2002. NF-kappaB regulation in the immune system. Nat Rev Immunol 2, 725-734. 149. Li, S., Fang, M., Zhou, B., Ni, H., Shen, Q., Zhang, H., Han, Y., Yin, J., Chang, W., Xu, G., Cao, G., 2011b. Simultaneous detection and differentiation of dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay. Virol J 8, 360. 150. Liang, D., Gao, Y., Lin, X., He, Z., Zhao, Q., Deng, Q., Lan, K., 2011. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res 21, 793-806. 151. Lidow, M.S., Song, Z.M., 2001. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol 435, 263-275. 152. Lin, C.W., Cheng, C.W., Yang, T.C., Li, S.W., Cheng, M.H., Wan, L., Lin, Y.J., Lai, C.H., Lin, W.Y., Kao, M.C., 2008. Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. Virus Res 137, 49-55. 153. Lin, K.C., Chang, H.L., Chang, R.Y., 2004a. Accumulation of a 3''-terminal genome fragment in Japanese encephalitis virus-infected mammalian and mosquito cells. J Virol 78, 5133-5138. 154. Lin, L., Deangelis, S., Foust, E., Fuchs, J., Li, C., Li, P.K., Schwartz, E.B., Lesinski, G.B., Benson, D., Lu, J., Hoyt, D., Lin, J., 2010a. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 9, 217. 155. Lin, R.J., Chang, B.L., Yu, H.P., Liao, C.L., Lin, Y.L., 2006. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80, 5908-5918. 156. Lin, R.J., Liao, C.L., Lin, Y.L., 2004b. Replication-incompetent virions of Japanese encephalitis virus trigger neuronal cell death by oxidative stress in a culture system. J Gen Virol 85, 521-533. 157. Lin, W., Tsai, W.L., Shao, R.X., Wu, G., Peng, L.F., Barlow, L.L., Chung, W.J., Zhang, L., Zhao, H., Jang, J.Y., Chung, R.T., 2010b. Hepatitis C virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor kappaB-dependent manner. Gastroenterology 138, 2509-2518, 2518 e2501. 158. Lin, W., Wu, G., Li, S., Weinberg, E.M., Kumthip, K., Peng, L.F., Mendez-Navarro, J., Chen, W.C., Jilg, N., Zhao, H., Goto, K., Zhang, L., Brockman, M.A., Schuppan, D., Chung, R.T., 2011. HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NFkappaB. J Biol Chem 286, 2665-2674. 159. Lincoln, A.F., Sivertson, S.E., 1952. Acute phase of Japanese B encephalitis; two hundred and one cases in American soldiers, Korea, 1950. J Am Med Assoc 150, 268-273. 160. Lindenbach, B.D., Rice, C.M., 2003. Molecular biology of flaviviruses. Adv Virus Res 59, 23-61. 161. Liu, B., Gao, H.M., Wang, J.Y., Jeohn, G.H., Cooper, C.L., Hong, J.S., 2002a. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962, 318-331. 162. Liu, X., Jana,en_US
dc.identifier.urihttp://hdl.handle.net/11455/20170-
dc.description.abstractType I interferon (IFN) is the first line of host defense against virus infection. Recent studies indicate the non-structural proteins of Japanese encephalitis virus (JEV) have antagonistic effects on type I IFN in vitro, but it is not consistent with the results in animal experiments and clinical cases. Therefore, we want to clarify whether blocking of type I IFN signaling by JEV is in a cell-specific manner. We found that the RNA expression of type I IFN was increased after JEV infection in microglia, but sightly affected in astrocytes. And its downstream signaling, transducers and activators of transcription (STAT) 1/2 protein family, was obviously phosphorylated in microglia. Astrocytes intrinsically expressed STAT1/2 in activated form, and not altered after JEV infection. Moreover, we also demonstrated similar results in protein expression of ISG15 and viperin, which are IFN-stimulated genes (ISGs). On the other hand, the production of type I IFN in central nervous system (CNS) is little known. Glia cells are numerous in rat cerebral cortex and also important in immunomodulation. Hence, we obversed activation of mitogen-activated protein kinase (MAPK), increased transcription activity of nuclear factor-κB (NF-κB) after JEV infection in mixed glia. It is a pathway involved in the biosynthesis of type I IFN, and regulated by reactive oxygen species (ROS). Further analysis indicated that JEV-induced oxidative press is mainly from superoxide, which is produced through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in microglia. In addition, protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were increased in microglia following JEV infection. Activated microglia, as evidenced by morphological transformation, play roles in neuroinflammation and may indirectly cause neuron death. Molecular pathogenesis of JEV is still unclear, and there is no useful drug to cure Japanese encephalitis patients in clinical. In this study, we pointed out that glia cells produce type I IFN through ROS─MAPK─NF-κB pathway after JEV infection. And activated glia cells not only process inflammatory response, but also indirectly lead to neuron death. Importantly, the sensitivity to type I IFN of microglia and astrocytes seems to be different. Providing a platform for studying molecular pathogenesis of JEV, it is potential to develope another strategy against JEV depend on cell-specific virus susceptibility.en_US
dc.description.abstract第一型干擾素是宿主細胞對抗病毒感染的第一道防線,近來研究指出日本腦炎病毒的非結構蛋白具有拮抗作用,但與活體動物實驗、臨床案例的結果並不一致。因此,我們想要釐清日本腦炎病毒拮抗第一型干擾素是否具有細胞特異性。本篇論文中,以日本腦炎病毒分別感染大鼠大腦皮質初代微神經膠細胞與星狀神經膠細胞,第一型干擾素 RNA 在前者有較為明顯的上升表現,而星狀神經膠細胞處理病毒後,除了本身第一型干擾素 RNA 的表現,僅微幅增加。第一型干擾素下游訊號路徑 signal transducers and activators of transcription (STAT)-1/2 蛋白家族,酪胺酸磷酸化位置在微神經膠細胞中明顯被活化,而星狀神經膠細胞本身就穩定表現活化態 STAT,沒有受到病毒感染而增加蛋白表現的幅度。進而探討下游第一型干擾素誘發基因,ISG15、viperin 抗病毒蛋白產物,也得到類似的結果。 此外,關於中樞神經系統如何產生第一型干擾素,知道的仍舊不多,而神經膠細胞除了參與免疫調節,也佔有大腦皮質大部分比例。因此,我們以日本腦炎病毒感染混合神經膠細胞後,發現 mitogen-activated protein kinase (MAPK) 路徑活化,促使 nuclear factor-κB (NF-κB) 進行轉錄生成第一型干擾素,且受到活性含氧物質的調控。進一步分析,觀察日本腦炎病毒造成的氧化壓力,主要來自微神經膠細胞,經由 nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 產生超氧化物所致。先前實驗室研究已指出神經膠細胞參與發炎反應,間接導致神經元細胞死亡。在此,我們也觀察到病毒感染微神經膠細胞增加 inducible nitric oxide synthase (iNOS)、cyclooxygenase-2 (COX-2) 蛋白表現。 目前針對日本腦炎病患臨床上尚無有效治療方式,相關致病分子機轉的研究有待釐清。在本篇論文中,我們指出 ROS─MAPK─NF-κB 為一條參與神經膠細胞生成第一型干擾素的路徑,且神經膠細胞進行發炎反應間接導致神經元細胞死亡。另外,我們說明不同細胞對於第一型干擾素具有感受性的差異,導致抗病毒能力亦不相同,提供一個思考平台探討日本腦炎病毒致病分子機轉,期許發展出另一種策略對抗日本腦炎病毒。zh_TW
dc.description.tableofcontents目次 誌謝辭------i 中文摘要------ii Abstract------iii 一、緒論------1 1.1. 前言------1 1.2. 日本腦炎病毒簡介------1 1.2.1. 日本腦炎病毒之起源------1 1.2.2. 日本腦炎病毒之分布及流行型態------2 1.2.3. 日本腦炎病毒之傳播途徑------2 1.2.4. 日本腦炎之臨床症狀------3 1.2.5. 日本腦炎之診斷治療------4 1.2.6. 日本腦炎病毒之防疫控管------5 1.2.7. 日本腦炎病毒的病毒分類------5 1.2.8. 日本腦炎病毒的分子結構------5 1.2.9. 日本腦炎病毒在台灣的情況------8 1.3. 中樞神經系統大腦皮質細胞組成簡介------9 1.3.1. 神經元細胞------9 1.3.2. 神經膠細胞------10 1.3.2.2. 微神經膠細胞------10 1.3.2.1. 大神經膠細胞------11 1.4. 第一型干擾素簡介------12 1.4.1. 第一型干擾素的分類------12 1.4.2. 第一型干擾素的產生機制------12 1.4.3. 第一型干擾素下游訊號傳遞路徑之正向活化機轉------13 1.4.4. 抗病毒相關的第一型干擾素誘發基因產物------13 1.4.5. 第一型干擾素下游訊號傳遞路徑之負向抑制機轉------14 1.4.6. 病毒逃脫第一型干擾素免疫作用的機制------14 1.4.7. 第一型干擾素對於中樞神經系統細胞的影響------15 1.5. 研究動機------16 二、材料方法------18 2.1. 抑制劑與試劑------18 2.2. 日本腦炎病毒增殖------18 2.3. 病毒溶斑試驗 (Plaque assay)------19 2.4. 病毒感染細胞------19 2.5. 初代大腦皮質細胞培養 (Rat cerebral cortex primary cell culture)------19 2.5.1. 混合神經膠細胞 (Mixed glia)------20 2.5.2. 微神經膠細胞 (Microglia)------20 2.5.3. 星狀神經膠細胞 (Astrocyte)------21 2.5.4. 神經元/神經膠細胞 (Neuron-Glia)------21 2.5.5. 神經元細胞 (Neuron cell)------22 2.6. 海馬迴組織器官培養 (Hippocampal tissue slice)------22 2.6.1. 利用 PI評估海馬迴離體組織培養之細胞傷害性------23 2.6.2. 海馬迴離體組織培養之螢光染色------24 2.7. 西方墨點法 (Western blot)------25 2.7.1. 蛋白質樣本的製備------25 2.7.2. 細胞膜蛋白質分層萃取------25 2.7.3. 電泳分離蛋白質與轉漬------26 2.7.4. 抗體免疫連結------27 2.8. 反轉錄聚合?鏈式反應 (Reverse transcription, RT-PCR)------27 2.8.1. RNA的抽取、定量------27 2.8.2. RNA的反轉錄------28 2.8.3. cDNA進行聚合?鏈式反應------28 2.8.4. 跑膠分離不同片段長度之核酸產物------29 2.9. 一氧化氮測量------30 2.10. 活性含氧物質測量------30 2.11. DAB免疫細胞染色 (DAB immunocytochemistry)------31 2.12. 免疫螢光細胞染色 (Immunofluorescent staining)------31 2.13. 細胞狀況分析------32 2.13. 1. 細胞毒性分析試驗 (LDH assay)------32 2.13. 2. 細胞活性分析試驗 (MTS assay)------32 2.14. 電泳遷移試驗 (Electrophoretic mobility shift assay, EMSA)------33 2.15. 統計分析------34 三、實驗結果------35 3.1. 日本腦炎感染混合神經膠細胞,導致第一型干擾素的RNA表現,並活化STATs 訊號路徑。------35 3.2. 日本腦炎病毒感染神經元細胞,對神經元細胞造成傷害。------35 3.3. 日本腦炎病毒感染海馬迴離體組織培養,對神經迴區域的細胞造成傷害。------36 3.4. 日本腦炎病毒感染神經膠細胞,會活化 MAPK 訊號路徑並增加 NF-κB 轉錄能力,參與第一型干擾素的生成。------36 3.5. 日本腦炎病毒感染神經膠細胞的過程,抗氧化劑抑制 MAPK- NF-κB 訊號路徑,並調控第一型干擾素的生成。------37 3.6. 日本腦炎病毒感染神經膠細胞,促使微神經膠細胞內活性含氧物質上升。------38 3.7. 日本腦炎病毒感染神經膠細胞,造成微神經膠細胞的 NADPH oxidase 活化。------38 3.8. 日本腦炎病毒感染微神經膠細胞與星狀神經膠細胞,第一型干擾素 RNA 表現量上升幅度在微神經膠細胞較為明顯。------39 3.9. 日本腦炎病毒感染微神經膠細胞與星狀神經膠細胞,STAT1/2 蛋白活化表現在微神經膠細胞較為明顯。------40 3.10. 日本腦炎病毒感染會導致微神經膠細胞內的干擾素誘發基因產物增加。------41 3.11. 日本腦炎病毒感染神經膠細胞,透過氧化壓力影響內源性第一型干擾素所誘發之下游基因產物。------41 3.12. 透過外源性第一型干擾素之給予,可以增加混合神經膠細胞內,病毒引起的干擾素誘發基因之蛋白表現。------42 3.13. 日本腦炎病毒感染神經膠細胞,主要誘發微神經膠細胞參與發炎反應。------42 3.14. 日本腦炎病毒感染活化微神經膠細胞,但並未明顯改變星狀神經膠細胞的型態。------44 3.15. 日本腦炎病毒感染海馬迴離體組織培養,造成神經元細胞損傷、微神經膠細胞增生。------44 3.16. 日本腦炎病毒感染神經元/神經膠細胞,透過神經膠細胞造成神經元細胞相對多的損傷。------45 3.17. 日本腦炎病毒感染混合神經膠細胞,透過 STAT1 路徑增加干擾素誘發基因,並影響一氧化氮合成?、環氧化?的蛋白表現。------46 3.18. 日本腦炎病毒透過 STAT1 的活化,維持微神經膠細胞的存活。------46 3.19. 日本腦炎病毒感染神經膠細胞,會造成微神經膠細胞 STAT3 的活化。------47 四、討論------48 五、圖表------53 六、參考文獻------91 圖表目次 圖3.1 日本腦炎病毒感染混合神經膠細胞,評估第一型干擾素的 RNA 表現之變化。------53 圖3.2 日本腦炎病毒感染混合神經膠細胞,評估誘發 STAT1、STAT2 磷酸化蛋白表現量之變化。------54 圖3.3 日本腦炎病毒感染神經元細胞,評估病毒對於 MAP-2 陽性細胞的傷害程度。------55 圖3.4 日本腦炎病毒感染神經元細胞,測定乳酸脫氫? (LDH) 釋出量的變化。------56 圖3.5 日本腦炎病毒感染海馬迴離體組織培養,評估病毒對於 PI 陽性細胞的影響。------57 圖3.6 日本腦炎病毒感染海馬迴離體組織培養,定量 PI 陽性細胞的表現變化。------58 圖3.7 日本腦炎病毒感染混合神經膠細胞,評估病毒對於 NF-κB 轉錄能力的影響。------59 圖3.8 日本腦炎病毒感染混合神經膠細胞,評估病毒對於 IκB-α、IκB-β 的蛋白質表現量之變化。------60 圖3.9 日本腦炎病毒感染混合神經膠細胞,評估 MAPK 訊號傳遞路徑相關蛋白表現量的變化。------61 圖3.10 日本腦炎病毒感染混合神經膠細胞,評估 ERK、NF-κB 抑制劑對於病毒引起的第一型干擾素RNA表現量之影響。------62 圖3.11 日本腦炎病毒感染混合神經膠細胞之後,評估抗氧化劑對於病毒引起磷酸化 ERK 蛋白表現之影響。------63 圖3.12 日本腦炎病毒感染混合神經膠細胞,評估抗氧化劑對病毒引起 NF-κB 轉錄能力之影響。------64 圖3.13 日本腦炎病毒感染混合神經膠細胞,評估抗氧化劑對於病毒引起的第一型干擾素 RNA 表現量之影響。------65 圖3.14 日本腦炎病毒感染微神經膠細胞 (A) 與星狀神經膠細胞 (B) 3小時後,透過 DCF 偵測細胞內活性含氧物質的變化。------66 圖3.15 日本腦炎病毒感染微神經膠細胞 (A) 與星狀神經膠細胞 (B) 3小時後,透過 DHE 偵測細胞內超氧化物的變化。------67 圖3.16 日本腦炎病毒感染混合神經膠細胞,評估 NADPH oxidase 蛋白單元由細胞質轉位 (Translocation) 至細胞膜的情形。------68 圖3.17 日本腦炎病毒感染微神經膠細胞,評估 NADPH oxidase 蛋白單元轉位至細胞膜的情形。------69 圖3.18 日本腦炎病毒感染星狀神經膠細胞 (A)、微神經膠細胞 (B),評估第一型干擾素的 RNA 表現之變化。------70 圖3.19 日本腦炎病毒感染微神經膠細胞,評估誘發 STAT1、STAT2 磷酸化蛋白表現量之變化。------71 圖3.20 日本腦炎病毒感染星狀神經膠細胞,評估誘發 STAT1、STAT2 磷酸化蛋白表現量之變化。------72 圖3.21 日本腦炎病毒感染微神經膠細胞,評估 STAT1 蛋白轉位至細胞核的情形。------73 圖3.22 日本腦炎病毒感染混合神經膠細胞 (A)、微神經膠細胞 (B)、星狀神經膠細胞 (C) 不同時間點,評估病毒引起 STAT1、STAT2 下游路徑 ISG 相關蛋白表現之變化。------74 圖3.23 日本腦炎病毒感染混合神經膠細胞,評估抗氧化劑對於病毒誘發的STAT 蛋白家族 RNA 表現之變化。------75 圖3.24 日本腦炎病毒感染混合神經膠細胞,評估抗氧化劑對於病毒誘發的STAT1 蛋白家族蛋白表現之變化。------76 圖3.25 日本腦炎病毒感染混合神經膠細胞,評估 IFN-α 對於病毒誘發的訊號路徑之蛋白表現影響。------77 圖3.26 日本腦炎病毒感染不同神經膠細胞,評估不同時間 nitrite 的含量變化。------78 圖3.27 日本腦炎病毒感染海馬迴離體組織培養,評估不同時間 nitrite 的含量變化。------79 圖3.28日本腦炎病毒感染不同神經膠細胞,評估誘發一氧化氮合成? (iNOS) 與環氧化?-2 (COX-2) 蛋白表現量之變化。------80 圖3.29日本腦炎病毒感染微神經膠細胞,評估病毒對於 CD68 陽性細胞的型態影響。------81 圖3.30日本腦炎病毒感染星狀神經膠細胞,評估病毒對於 GFAP 陽性細胞的型態影響。------82 圖3.31日本腦炎病毒感染海馬迴離體組織培養,評估病毒對於 Iba1、MAP-2陽性細胞的影響。------83 圖3.32日本腦炎病毒感染海馬迴離體組織培養,定量 Iba1、MAP-2 陽性細胞螢光強度的變化。------84 圖3.33日本腦炎病毒感染神經元/神經膠細胞,評估病毒對於 MAP-2 陽性細胞的傷害程度。------85 圖3.34日本腦炎病毒感染神經元/神經膠細胞,測定乳酸脫氫? (LDH) 釋出量的變化。------86 圖3.35日本腦炎病毒感染混合神經膠細胞,評估 STAT1 抑制劑對於病毒誘發的訊號路徑之蛋白表現影響。------87 圖3.36日本腦炎病毒感染微神經膠細胞,評估 STAT1 抑制劑對於細胞存活的影響。------88 圖3.37日本腦炎病毒感染混合神經膠細胞 (A)、微神經膠細胞 (B)、星狀神經膠細胞 (C) 不同時間點,評估病毒對於 STAT3 磷酸化蛋白表現量之影響。------89 圖3.38 日本腦炎病毒感染微神經膠細胞,評估 STAT3蛋白轉位至細胞核的情形。------90zh_TW
dc.language.isoen_USzh_TW
dc.publisher生物醫學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1411201110550200en_US
dc.subjectJapanese encephalitis virusen_US
dc.subject日本腦炎病毒zh_TW
dc.subjectRat cerebral cortex primary cellen_US
dc.subjectType I interferonen_US
dc.subjectSignal transducer and activator of transcriptionen_US
dc.subjectInterferon stimulated geneen_US
dc.subject大鼠大腦皮質初代細胞zh_TW
dc.subject第一型干擾素zh_TW
dc.subject訊號轉導與轉錄活化蛋白zh_TW
dc.subject第一型干擾素誘發基因zh_TW
dc.title探討第一型干擾素訊號路徑在日本腦炎病毒感染大鼠神經膠細胞所扮演之角色zh_TW
dc.titleRole of Type I Interferons Signaling Pathway during Japanese encephalitis virus Infection in Rat Glial Cellen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
Appears in Collections:生物醫學研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.