Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20173
標題: 靈菌紅素在人類肺腺癌細胞中藉由抑制SKP2促進p27KIP1的蛋白穩定性造成細胞生長停滯
Prodigiosin induces p27KIP1 stabilization and growth inhibition by down-regulating SKP2 in human lung adenocarcinoma cells
作者: 謝欣穎
Hsieh, Hsin-Ying
關鍵字: Prodigiosin;靈菌紅素;lung adenicarcinoma;肺腺癌
出版社: 生物醫學研究所
引用: 陸、參考文獻 1. Schiller, J.H., et al., Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med, 2002. 346(2): p. 92-8. 2. Todaro, G.J., J.E. De Larco, and S. Cohen, Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature, 1976. 264(5581): p. 26-31. 3. Fischer, B. and R. Buhl, [Lung cancer]. Med Klin (Munich), 2008. 103(5): p. 311-20. 4. Zhang, X., et al., An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 2006. 125(6): p. 1137-49. 5. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 6. Endo, C., et al., Surgical treatment of stage I non-small cell lung carcinoma. Ann Thorac Cardiovasc Surg, 2003. 9(5): p. 283-9. 7. Stinchcombe, T.E. and M.A. Socinski, Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc, 2009. 6(2): p. 233-41. 8. Rossi, A., et al., The emerging role of histology in the choice of first-line treatment of advanced non-small cell lung cancer: implication in the clinical decision-making. Curr Med Chem, 2010. 17(11): p. 1030-8. 9. Mendelsohn, J. and J. Baselga, The EGF receptor family as targets for cancer therapy. Oncogene, 2000. 19(56): p. 6550-6565. 10. Shepherd, F.A., et al., Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med, 2005. 353(2): p. 123-32. 11. Thatcher, N., et al., Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 2005. 366(9496): p. 1527-1537. 12. Heinmoller, P., et al., HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res, 2003. 9(14): p. 5238-43. 13. Stephens, P., et al., Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature, 2004. 431(7008): p. 525-6. 14. Wang, S.E., et al., HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell, 2006. 10(1): p. 25-38. 15. Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004. 304(5670): p. 554. 16. Malanga, D., et al., Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle, 2008. 7(5): p. 665-9. 17. Naoki, K., et al., Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res, 2002. 62(23): p. 7001-3. 18. Marks, J.L., et al., Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res, 2008. 68(14): p. 5524-8. 19. Blumenschein, G., Jr., Sorafenib in lung cancer: clinical developments and future directions. J Thorac Oncol, 2008. 3(6 Suppl 2): p. S124-7. 20. Emery, C.M., et al., MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A, 2009. 106(48): p. 20411-6. 21. Shapiro, G., et al., Phase I dose-escalation study of XL147, a PI3K inhibitor administered orally to patients with solid tumors. Journal of Clinical Oncology, 2009. 27(15). 22. Tolcher, A.W., et al., A phase I study of MK-2206, an oral potent allosteric Akt inhibitor (Akti), in patients (pts) with advanced solid tumor (ST). Journal of Clinical Oncology, 2009. 27(15). 23. Ma, X. and Z. Wang, Anticancer drug discovery in the future: an evolutionary perspective. Drug Discov Today, 2009. 14(23-24): p. 1136-42. 24. DeVita, V.T., Jr. and E. Chu, A history of cancer chemotherapy. Cancer Res, 2008. 68(21): p. 8643-53. 25. Chabner, B.A. and T.G. Roberts, Jr., Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer, 2005. 5(1): p. 65-72. 26. Cragg, G.M., P.G. Grothaus, and D.J. Newman, Impact of natural products on developing new anti-cancer agents. Chem Rev, 2009. 109(7): p. 3012-43. 27. Ravelo, A.G., et al., Recent studies on natural products as anticancer agents. Current Topics in Medicinal Chemistry, 2004. 4(2): p. 241-265. 28. Hopwood, D.A., Therapeutic treasures from the deep. Nat Chem Biol, 2007. 3(8): p. 457-8. 29. Furstner, A., Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed Engl, 2003. 42(31): p. 3582-603. 30. Bickels, J., et al., Coley''s toxin: historical perspective. Isr Med Assoc J, 2002. 4(6): p. 471-2. 31. Perez-Tomas, R., et al., The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol, 2003. 66(8): p. 1447-52. 32. Wei, Y.H. and W.C. Chen, Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies. J Biosci Bioeng, 2005. 99(6): p. 616-22. 33. Campas, C., et al., Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia, 2003. 17(4): p. 746-50. 34. Soto-Cerrato, V., et al., Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem Pharmacol, 2004. 68(7): p. 1345-52. 35. Ho, T.F., et al., Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53. Toxicol Appl Pharmacol, 2007. 225(3): p. 318-28. 36. Ohkuma, S., et al., Prodigiosins uncouple lysosomal vacuolar-type ATPase through promotion of H+/Cl- symport. Biochem J, 1998. 334 ( Pt 3): p. 731-41. 37. Yamamoto, D., et al., Cycloprodigiosin hydrochloride, H(+)/CL(-) symporter, induces apoptosis and differentiation in HL-60 cells. Int J Cancer, 2000. 88(1): p. 121-8. 38. Manderville, R.A., Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anticancer Agents, 2001. 1(2): p. 195-218. 39. Montaner, B., et al., DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol Sci, 2005. 85(2): p. 870-9. 40. Ho, T.F., et al., Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines. Toxicol Appl Pharmacol, 2009. 235(2): p. 253-60. 41. Montaner, B. and R. Perez-Tomas, The cytotoxic prodigiosin induces phosphorylation of p38-MAPK but not of SAPK/JNK. Toxicology Letters, 2002. 129(1-2): p. 93-98. 42. Soto-Cerrato, V., et al., Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-30 activity in human breast cancer cells. Molecular Cancer Therapeutics, 2007. 6(1): p. 362-369. 43. Songia, S., et al., Characterization of the new immunosuppressive drug undecylprodigiosin in human lymphocytes: retinoblastoma protein, cyclin-dependent kinase-2, and cyclin-dependent kinase-4 as molecular targets. J Immunol, 1997. 158(8): p. 3987-95. 44. Soto-Cerrato, V., et al., The anticancer agent prodigiosin induces p21(WAF1/C1P1) expression via transforming growth factor-beta receptor pathway. Biochemical Pharmacology, 2007. 74(9): p. 1340-1349. 45. Zhang, J., et al., Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochemical Pharmacology, 2005. 69(3): p. 407-414. 46. Morgan, D.O., Principles of CDK regulation. Nature, 1995. 374(6518): p. 131-4. 47. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12. 48. Dulic, V., E. Lees, and S.I. Reed, Association of human cyclin E with a periodic G1-S phase protein kinase. Science, 1992. 257(5078): p. 1958-61. 49. Marchetti, A., et al., Cyclin D1 and retinoblastoma susceptibility gene alterations in non-small cell lung cancer. Int J Cancer, 1998. 75(2): p. 187-92. 50. el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-25. 51. Zhao, Y.F., et al., P21 (waf1/cip1) is required for non-small cell lung cancer sensitive to Gefitinib treatment. Biomed Pharmacother, 2011. 52. Sheaff, R.J., et al., Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev, 1997. 11(11): p. 1464-78. 53. Russo, A.A., et al., Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature, 1996. 382(6589): p. 325-31. 54. Hengst, L. and S.I. Reed, Translational control of p27Kip1 accumulation during the cell cycle. Science, 1996. 271(5257): p. 1861-4. 55. Bagui, T.K., et al., Inhibition of p27Kip1 gene transcription by mitogens. Cell Cycle, 2009. 8(1): p. 115-24. 56. Carrano, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999. 1(4): p. 193-9. 57. Mishra, A., S.K. Godavarthi, and N.R. Jana, UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis, 2009. 36(1): p. 26-34. 58. Hershko, D.D., Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer, 2008. 112(7): p. 1415-24. 59. Fero, M.L., et al., A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell, 1996. 85(5): p. 733-44. 60. Di Cristofano, A., et al., Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet, 2001. 27(2): p. 222-4. 61. Glover, C.E., et al., Endocrine dysfunction in p27Kip1 deficient mice and susceptibility to Wnt-1 driven breast cancer. Carcinogenesis, 2009. 30(6): p. 1058-63. 62. Loda, M., et al., Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med, 1997. 3(2): p. 231-4. 63. Au, N.H., et al., Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised hierarchical clustering analysis: a tissue microarray study of 284 cases and 18 markers. J Pathol, 2004. 204(1): p. 101-9. 64. Catzavelos, C., et al., Reduced expression of the cell cycle inhibitor p27Kip1 in non-small cell lung carcinoma: a prognostic factor independent of Ras. Cancer Res, 1999. 59(3): p. 684-8. 65. Perez-Tomas, R. and B. Montaner, Effects of the proapoptotic drug prodigiosin on cell cycle-related proteins in Jurkat T cells. Histol Histopathol, 2003. 18(2): p. 379-85. 66. Singhal, S., et al., Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res, 2005. 11(11): p. 3974-86. 67. Zhu, C.Q., et al., Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation. J Clin Pathol, 2006. 59(8): p. 790-800. 68. Weissman, A.M., Regulating protein degradation by ubiquitination. Immunol Today, 1997. 18(4): p. 189-98. 69. Clurman, B.E., et al., Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev, 1996. 10(16): p. 1979-90. 70. Pagano, M., et al., Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 1995. 269(5224): p. 682-5. 71. Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 2005. 6(1): p. 79-87. 72. Wickliffe, K., et al., The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev, 2009. 109(4): p. 1537-48. 73. Nakayama, K.I. and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer, 2006. 6(5): p. 369-81. 74. Nakayama, K.I. and K. Nakayama, Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol, 2005. 16(3): p. 323-33. 75. Zhang, H., et al., p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell, 1995. 82(6): p. 915-25. 76. Marti, A., et al., Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol, 1999. 1(1): p. 14-9. 77. Gstaiger, M., et al., Skp2 is oncogenic and overexpressed in human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(9): p. 5043-5048. 78. Shim, E.H., et al., Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res, 2003. 63(7): p. 1583-8. 79. Lin, H.K., et al., Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol, 2009. 11(4): p. 420-32. 80. Bloom, J. and M. Pagano, Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol, 2003. 13(1): p. 41-7. 81. Nakayama, K., et al., Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J, 2000. 19(9): p. 2069-81. 82. Testa, J.R. and A. Bellacosa, AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A, 2001. 98(20): p. 10983-5. 83. Datta, S.R., A. Brunet, and M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev, 1999. 13(22): p. 2905-27. 84. Di Cristofano, A. and P.P. Pandolfi, The multiple roles of PTEN in tumor suppression. Cell, 2000. 100(4): p. 387-90. 85. Lawlor, M.A. and D.R. Alessi, PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci, 2001. 114(Pt 16): p. 2903-10. 86. Kawauchi, K., et al., Cycloprodigiosin hydrochloride activates the Ras-PI3K-Akt pathway and suppresses protein synthesis inhibition-induced apoptosis in PC12 cells. Biosci Biotechnol Biochem, 2008. 72(6): p. 1564-70. 87. Soto-Cerrato, V., et al., Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3beta activity in human breast cancer cells. Mol Cancer Ther, 2007. 6(1): p. 362-9. 88. Mamillapalli, R., et al., PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol, 2001. 11(4): p. 263-7. 89. Andreu, E.J., et al., BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27 (Kip1) degradation and proliferation of chronic myelogenous leukemia cells. Cancer Research, 2005. 65(8): p. 3264-3272. 90. Perkins, N.D. and B. Barre, A cell cycle regulatory network controlling NF-kappa B subunit activity and function. Embo Journal, 2007. 26(23): p. 4841-4855. 91. Reichert, M., et al., Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res, 2007. 67(9): p. 4149-56. 92. Diehl, J.A., et al., Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 1998. 12(22): p. 3499-511. 93. Cohen, P. and S. Frame, The renaissance of GSK3. Nat Rev Mol Cell Biol, 2001. 2(10): p. 769-76. 94. Doble, B.W. and J.R. Woodgett, GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci, 2003. 116(Pt 7): p. 1175-86. 95. Cook, D., et al., Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J, 1996. 15(17): p. 4526-36. 96. Cross, D.A., et al., Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995. 378(6559): p. 785-9. 97. Sonoda, H., et al., Significance of skp2 expression in primary breast cancer. Clin Cancer Res, 2006. 12(4): p. 1215-20. 98. Chen, J.Y., M.C. Wang, and W.C. Hung, Transcriptional activation of Skp2 by BCR-ABL in K562 chronic myeloid leukemia cells. Leuk Res, 2009. 33(11): p. 1520-4. 99. Wang, Z., et al., Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature, 2008. 455(7217): p. 1205-9. 100. Surjit, M. and S.K. Lal, Glycogen synthase kinase-3 phosphorylates and regulates the stability of p27kip1 protein. Cell Cycle, 2007. 6(5): p. 580-8. 101. Yamamoto, C., et al., Cycloprodigiosin hydrochloride, a new H(+)/Cl(-) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology, 1999. 30(4): p. 894-902. 102. Yamamoto, D., et al., Cycloprodigiosin hydrochloride, a H+/Cl- symporter, induces apoptosis in human breast cancer cell lines. J Cancer Res Clin Oncol, 2000. 126(4): p. 191-7. 103. Mortellaro, A., et al., New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol, 1999. 162(12): p. 7102-9. 104. Liu, S. and H. Yamauchi, p27-Associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function. Cancer Lett, 2009. 286(2): p. 240-9. 105. Lin, R., et al., Inhibition of F-Box protein p45(SKP2) expression and stabilization of cyclin-dependent kinase inhibitor p27(KIP1) in vitamin D analog-treated cancer cells. Endocrinology, 2003. 144(3): p. 749-53. 106. Huang, H.C., et al., EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology, 2008. 149(12): p. 5972-83. 107. Bryant, P., Q. Zheng, and K. Pumiglia, Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and -independent mechanisms. Mol Cell Biol, 2006. 26(11): p. 4201-13. 108. Lin, H.K., et al., Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 2010. 464(7287): p. 374-9. 109. Soucy, T.A., et al., An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009. 458(7239): p. 732-U67. 110. Narita, Y., et al., Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res, 2002. 62(22): p. 6764-9. 111. Weng, L.P., J.L. Brown, and C. Eng, PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet, 2001. 10(6): p. 599-604. 112. Yakes, F.M., et al., Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res, 2002. 62(14): p. 4132-41. 113. Kim, S.W., et al., Ceramide produces apoptosis through induction of p27(kip1) by protein phosphatase 2A-dependent Akt dephosphorylation in PC-3 prostate cancer cells. J Toxicol Environ Health A, 2010. 73(21-22): p. 1465-76. 114. Zheng, X., et al., Effects of wortmannin on phosphorylation of PDK1, GSK3-beta, PTEN and expression of Skp2 mRNA after ischemia/reperfusion injury in the mouse kidney. Int Urol Nephrol, 2008. 40(1): p. 185-92. 115. Dos Reis Vasques, L., et al., Knockdown of E2f1 by RNA interference impairs proliferation of rat cells in vitro. Genet Mol Biol, 2010. 33(1): p. 17-22. 116. Halaban, R., Rb/E2F: a two-edged sword in the melanocytic system. Cancer Metastasis Rev, 2005. 24(2): p. 339-56. 117. Barre, B. and N.D. Perkins, A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J, 2007. 26(23): p. 4841-55.
摘要: 
肺癌是目前被認為是一種轉移性強而且預後差的癌症,許多研究都積極的尋找有效的治療方法。PG是由細菌所產生的一種紅色色素,被認為是具有潛力的抗癌藥物,不過PG抑制癌細胞增生的機制目前還有待釐清。在本實驗中,我們發現PG處理可以藉由提升p27 kip1的表現有效抑制肺腺癌細胞的細胞週期進行,而且p27 kip1蛋白量的增加不是由於p27 kip1基因的高度表現,而是因為增加了p27 kip1在細胞內的蛋白穩定性。SKP2是一種E3 ubiquitin ligase的重要組成蛋白,被認為與p27 kip1的分解有直接關聯,的確PG處理後就會抑制SKP2的表現量。透過細胞群落分析,看到穩定抑制p27 kip1或是高度表現SKP2的細胞便不會受到PG抑制細胞增生效果的影響。最後,我們發現PG會透過調控PI3K/AKT/GSK-3b訊息路徑去抑制SKP2的表現,如果持續性活化AKT或共同處理GSK-3b抑制劑,會使PG降低SKP2蛋白的程度有回復現象。綜合以上結果,證實PG會抑制PI3K/AKT/GSK-3b這條訊息傳遞路徑去負調控SKP2的表現,因此使p27 kip1的蛋白穩定性提升進而導致細胞週期停滯抑制癌細胞增生,也顯示了在PG的抗癌機制中,SKP2扮演了連結上下游的重要角色,抑制此致癌基因有潛力成為未來治療肺癌的有效策略。

Lung cancer has been viewed as an aggressive disease with few treatment options and poor survival. Therefore, novel treatment strategies are needed. The anticancer agent prodigiosin (PG) is a natural red pigment produced by microorganisms. In this study, we demonstrated PG could lead to cell cycle arrest by increasing p27Kip1 expression in human lung adenocarcinoma cells. RT-PCR analysis, promoter activity assay and cycloheximide co-treatment indicated that the increased level of p27Kip1 was not due to increased p27Kip1 gene expression, but rather resulting from increased p27Kip1 protein stability. Intriguingly, SKP2, a central E3 ubiquitin ligase responsible for p27Kip1 degradation, was found to be markedly down-regulated by PG. Further analysis indicated that PG inhibits the SKP2 mRNA expression and promoter activity. Importantly, colony formation assay demonstrated that cells with stable p27Kip1 knockdown or ectopic SKP2 expression confer resistance to PG-induced antiproliferation. Finally, we found that PG regulates PI3K/AKT/GSK-3b signaling to down-regulate SKP2. Expression of constitutively active AKT or treatment with AR-A014418 could reverse the inhibition of SKP2 caused by PG. Together, these results indicates that PG inhibits PI3K/AKT/GSK-3b signaling to reduce SKP2 expression, which contributes to the increasing p27Kip1 stabilization therefore blocks the cell cycle progression. It also demonstrates that SKP2 is an important target of PG and give a potential strategy for chemotherapy in lung cancer.
URI: http://hdl.handle.net/11455/20173
其他識別: U0005-1608201117182700
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.