Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20185
標題: N-乙醯半胱胺酸對於顯影劑造成之細胞毒性的治療窗口限制
Narrow Therapeutic Window of N-acetylcysteine for Radiocontrast Cytotoxicity
作者: 陳一心
Chen, Yi-Hsin
關鍵字: 顯影劑;radiocontrast;急性腎衰竭;N-乙醯半胱胺酸;acute renal failure;N-acetylcysteine
出版社: 生物醫學研究所
引用: 1. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Critical care 2007;11(2):R31. 2. Albright RC, Jr. Acute renal failure: a practical update. Mayo Clinic proceedings. Mayo Clinic 2001;76(1):67-74. 3. Hou SH, Bushinsky DA, Wish JB, et al. Hospital-acquired renal insufficiency: a prospective study. The American journal of medicine 1983;74(2):243-8. 4. Clermont G, Acker CG, Angus DC, et al. Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney international 2002;62(3):986-96. 5. Metcalfe W, Simpson M, Khan IH, et al. Acute renal failure requiring renal replacement therapy: incidence and outcome. QJM : monthly journal of the Association of Physicians 2002;95(9):579-83. 6. de Mendonca A, Vincent JL, Suter PM, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive care medicine 2000;26(7):915-21. 7. Shusterman N, Strom BL, Murray TG, et al. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. The American journal of medicine 1987;83(1):65-71. 8. Abernethy VE, Lieberthal W. Acute renal failure in the critically ill patient. Critical care clinics 2002;18(2):203-22, v. 9. Chertow GM, Christiansen CL, Cleary PD, et al. Prognostic stratification in critically ill patients with acute renal failure requiring dialysis. Archives of internal medicine 1995;155(14):1505-11. 10. Davidson C, Stacul F, McCullough PA, et al. Contrast medium use. The American journal of cardiology 2006;98(6A):42K-58K. 11. Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 1993;188(1):171-8. 12. McCullough PA, Bertrand ME, Brinker JA, et al. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. Journal of the American College of Cardiology 2006;48(4):692-9. 13. Nikolsky E, Mehran R, Turcot D, et al. Impact of chronic kidney disease on prognosis of patients with diabetes mellitus treated with percutaneous coronary intervention. The American journal of cardiology 2004;94(3):300-5. 14. Evans RG, Gardiner BS, Smith DW, et al. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. American journal of physiology. Renal physiology 2008;295(5):F1259-70. 15. Brezis M, Heyman SN, Dinour D, et al. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. The Journal of clinical investigation 1991;88(2):390-5. 16. Morcos SK. Contrast media-induced nephrotoxicity--questions and answers. The British journal of radiology 1998;71(844):357-65. 17. Solomon R, Werner C, Mann D, et al. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. The New England journal of medicine 1994;331(21):1416-20. 18. Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney international 2005;68(1):14-22. 19. Tumlin J, Stacul F, Adam A, et al. Pathophysiology of contrast-induced nephropathy. The American journal of cardiology 2006;98(6A):14K-20K. 20. Bakris GL, Burnett JC, Jr. A role for calcium in radiocontrast-induced reductions in renal hemodynamics. Kidney international 1985;27(2):465-8. 21. Heyman SN, Brezis M, Epstein FH, et al. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney international 1991;40(4):632-42. 22. Pflueger A, Larson TS, Nath KA, et al. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clinic proceedings. Mayo Clinic 2000;75(12):1275-83. 23. Liss P, Carlsson PO, Palm F, et al. Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat. European radiology 2004;14(7):1297-302. 24. Hansen PB, Hashimoto S, Oppermann M, et al. Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. The Journal of pharmacology and experimental therapeutics 2005;315(3):1150-7. 25. Heyman SN, Rosenberger C, Rosen S. Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2005;20 Suppl 1:i6-11. 26. Oldroyd S, Slee SJ, Haylor J, et al. Role for endothelin in the renal responses to radiocontrast media in the rat. Clinical science 1994;87(4):427-34. 27. Liss P, Carlsson PO, Nygren A, et al. Et-A receptor antagonist BQ123 prevents radiocontrast media-induced renal medullary hypoxia. Acta radiologica 2003;44(1):111-7. 28. Fujisaki K, Kubo M, Masuda K, et al. Infusion of radiocontrast agents induces exaggerated release of urinary endothelin in patients with impaired renal function. Clinical and experimental nephrology 2003;7(4):279-83. 29. Breyer MD, Breyer RM. Prostaglandin E receptors and the kidney. American journal of physiology. Renal physiology 2000;279(1):F12-23. 30. Botting R, Vane JR. Vasoactive mediators derived from the endothelium. Archives des maladies du coeur et des vaisseaux 1989;82 Spec No 4:11-4. 31. Spargias K, Adreanides E, Demerouti E, et al. Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 2009;120(18):1793-9. 32. Gurkowski L, MacDougall M, Wiegmann T. Effects of Misoprostol on Contrast-Induced Renal Dysfunction. American journal of therapeutics 1995;2(11):837-842. 33. Brenner BM, Troy JL, Ballermann BJ. Endothelium-dependent vascular responses. Mediators and mechanisms. The Journal of clinical investigation 1989;84(5):1373-8. 34. Cowley AW, Jr., Mori T, Mattson D, et al. Role of renal NO production in the regulation of medullary blood flow. American journal of physiology. Regulatory, integrative and comparative physiology 2003;284(6):R1355-69. 35. Myers SI, Wang L, Liu F, et al. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 2006;44(2):383-91. 36. Agmon Y, Peleg H, Greenfeld Z, et al. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. The Journal of clinical investigation 1994;94(3):1069-75. 37. Pflueger A, Abramowitz D, Calvin AD. Role of oxidative stress in contrast-induced acute kidney injury in diabetes mellitus. Medical science monitor : international medical journal of experimental and clinical research 2009;15(6):RA125-36. 38. Bakris GL, Lass N, Gaber AO, et al. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. The American journal of physiology 1990;258(1 Pt 2):F115-20. 39. Katholi RE, Woods WT, Jr., Taylor GJ, et al. Oxygen free radicals and contrast nephropathy. American journal of kidney diseases : the official journal of the National Kidney Foundation 1998;32(1):64-71. 40. Hardiek K, Katholi RE, Ramkumar V, et al. Proximal tubule cell response to radiographic contrast media. American journal of physiology. Renal physiology 2001;280(1):F61-70. 41. Romano G, Briguori C, Quintavalle C, et al. Contrast agents and renal cell apoptosis. European heart journal 2008;29(20):2569-76. 42. Lee HC, Sheu SH, Yen HW, et al. JNK/ATF2 pathway is involved in iodinated contrast media-induced apoptosis. American journal of nephrology 2010;31(2):125-33. 43. Hizoh I, Haller C. Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Investigative radiology 2002;37(8):428-34. 44. Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Investigative radiology 2004;39(3):149-54. 45. DiMari J, Megyesi J, Udvarhelyi N, et al. N-acetyl cysteine ameliorates ischemic renal failure. The American journal of physiology 1997;272(3 Pt 2):F292-8. 46. Tepel M, van der Giet M, Schwarzfeld C, et al. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. The New England journal of medicine 2000;343(3):180-4. 47. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation 2011;124(11):1250-9. 48. Atkins JL. Effect of sodium bicarbonate preloading on ischemic renal failure. Nephron 1986;44(1):70-4. 49. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology 1990;186:1-85. 50. Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA : the journal of the American Medical Association 2004;291(19):2328-34. 51. Ozcan EE, Guneri S, Akdeniz B, et al. Sodium bicarbonate, N-acetylcysteine, and saline for prevention of radiocontrast-induced nephropathy. A comparison of 3 regimens for protecting contrast-induced nephropathy in patients undergoing coronary procedures. A single-center prospective controlled trial. American heart journal 2007;154(3):539-44. 52. Hogan SE, L''Allier P, Chetcuti S, et al. Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis. American heart journal 2008;156(3):414-21. 53. Marenzi G, Lauri G, Campodonico J, et al. Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. The American journal of medicine 2006;119(2):155-62. 54. Drager LF, Andrade L, Barros de Toledo JF, et al. Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2004;19(7):1803-7. 55. Eisenberg RL, Bank WO, Hedgock MW. Renal failure after major angiography can be avoided with hydration. AJR. American journal of roentgenology 1981;136(5):859-61. 56. Weinstein JM, Heyman S, Brezis M. Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron 1992;62(4):413-5. 57. Taylor AJ, Hotchkiss D, Morse RW, et al. PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 1998;114(6):1570-4. 58. Mueller C, Buerkle G, Buettner HJ, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Archives of internal medicine 2002;162(3):329-36. 59. Gupta RK, Kapoor A, Tewari S, et al. Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study. Indian heart journal 1999;51(5):521-6. 60. Yokomaku Y, Sugimoto T, Kume S, et al. Asialoerythropoietin prevents contrast-induced nephropathy. Journal of the American Society of Nephrology : JASN 2008;19(2):321-8. 61. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clinical journal of the American Society of Nephrology : CJASN 2008;3(1):288-96. 62. Moreau JF, Droz D, Sabto J, et al. Osmotic Nephrosis Induced by Water-Soluble Triiodinated Contrast Media in Man. A Retrospective Study of 47 Cases. Radiology 1975;115(2):329-36. 63. Moreau JF, Droz D, Noel LH. Nephrotoxicity of metrizamide in man. Lancet 1978;1(8075):1201. 64. Bakris GL, Gaber AO, Jones JD. Oxygen free radical involvement in urinary Tamm-Horsfall protein excretion after intrarenal injection of contrast medium. Radiology 1990;175(1):57-60. 65. Hirsch R, Dent C, Pfriem H, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatric nephrology 2007;22(12):2089-95. 66. Briguori C, Colombo A, Violante A, et al. Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. European heart journal 2004;25(3):206-11. 67. Marenzi G, Assanelli E, Marana I, et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. The New England journal of medicine 2006;354(26):2773-82. 68. Heyman SN, Goldfarb M, Shina A, et al. N-acetylcysteine ameliorates renal microcirculation: studies in rats. Kidney international 2003;63(2):634-41. 69. Hoffmann U, Fischereder M, Kruger B, et al. The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. Journal of the American Society of Nephrology : JASN 2004;15(2):407-10. 70. Marui N, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. The Journal of clinical investigation 1993;92(4):1866-74. 71. Weber C, Erl W, Pietsch A, et al. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arteriosclerosis and thrombosis : a journal of vascular biology / American Heart Association 1994;14(10):1665-73. 72. Faruqi RM, Poptic EJ, Faruqi TR, et al. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression. The American journal of physiology 1997;273(2 Pt 2):H817-26. 73. Manov I, Hirsh M, Iancu TC. N-acetylcysteine does not protect HepG2 cells against acetaminophen-induced apoptosis. Basic & clinical pharmacology & toxicology 2004;94(5):213-25. 74. Lepri E, Gambelunghe C, Fioravanti A, et al. N-acetylcysteine increases apoptosis induced by H(2)O(2) and mo-antiFas triggering in a 3DO hybridoma cell line. Cell biochemistry and function 2000;18(3):201-8. 75. Menon SG, Sarsour EH, Kalen AL, et al. Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer research 2007;67(13):6392-9. 76. Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney international 2003;64(1):128-39.
摘要: 
Contrast is widely used in different interventional procedures and image studies but with well-recognized nephrotoxicity. Contrast-induced nephropathy(CIN) accounts for 10% causes of acute renal failure in hospital and incidence even higher as 50% in patients with cardiovascular disease, diabetes mellitus, or preexisting chronic kidney disease. Different methods such as using hydration and sodium bicarbonate had been developed to reduce the incidence of CIN. N-acetylcysteine(NAC) is used for preventing CIN on account of its antioxidant and vasodilating properties but protection effect remains controversial. We demonstrated the different dosage effect of NAC on MDCK and HK-2 cell lines representative of distal and proximal tubular cell. Cell viability of MDCK was reduced by iodixanol (non-ionic iso-osmolar contrast) more than HK-2 in WST assay. HK-2 and MDCK revealed no reduction of cell viability when treated with NAC until 10mM but HK-2 showed less cell viability than MDCK. When cotreated with NAC in the presence of contrast, no protection of NAC was observed in HK-2 but with limited protection in MDCK. Improvement of cell viability was observed in iodixanol 50mgI/mL and 100mgI/mL when cotreated with NAC 10mM and 20mM. NAC showed cytotoxic effect of MDCK in LDH assay in dosage incremental manner. Further analysis with cell cycle showed incremental of subG1 group when treated with NAC in MDCK.ATP depletion was also observed in NAC 20mM and 40mM. We also found mitochondria membrane potential loss of MDCK when treated with iodixanol 100mgI/mL. Mitochondria membrane potential loss was attenuated by NAC when treated with 10mM and 20mM in dose-response manner.The result revealed narrow protection effect of NAC. The negative effect give a hint about cautious dosage adjustment while NAC is applied to CIN prevention.

顯影劑在醫學影像檢查的地位相當重要,也廣泛的運用於各種侵入性檢查以及影像檢查。但是顯影劑有廣為所知的腎毒性,據統計在醫院內發生的急性腎衰竭病例中有百分之十是因為顯影劑所引起,而且如果患者有心血管疾病、糖尿病或是慢性腎臟病,其比例會更高,可能達到百分之五十的發生率。過去數十年來,已經發展出各式各樣的方法來預防顯影劑腎病變,例如給水補充或是以碳酸氫鈉預防,但是效果並不一致。N-乙醯半胱胺酸目前也被用來預防顯影劑腎病變,而N-乙醯半胱胺酸具有抗氧化作用以及血管擴張效果,但是臨床效果仍有部分爭議。在本研究中,我們使用不同劑量的N-乙醯半胱胺酸針對MDCK與HK-2細胞株(MDCK代表遠端腎小管細胞,HK-2代表近端腎小管細胞)看是否能降低顯影劑引起的細胞毒性。我們以iodixnaol非離子等滲透壓的顯影劑處理,並用WST分析細胞存活率,發現在不同濃度iodixnaol都是MDCK存活率較HK-2差。而N-乙醯半胱胺酸在NAC 20mM時HK-2的細胞存活率較MDCK低下。在同時給予N-乙醯半胱胺酸與iodixanol時,N-乙醯半胱胺酸對於HK-2完全沒有保護力。而N-乙醯半胱胺酸在10mM與20mM對於MDCK以50mgI/mL與100mgI/mL的iodixanol則有部分的保護效果,N-乙醯半胱胺酸對於MDCK細胞的毒性以LDH assay分析,可以得到劑量-反應圖的確認。我們還觀察到N-乙醯半胱胺酸造成MDCK細胞內ATP含量的下降。另外iodixnaol造成粒線體膜電位的喪失會經由N-乙醯半胱胺酸而減弱。所以N-乙醯半胱胺酸對於顯影劑細胞毒性的保護效果是來自於粒線體膜電位的改善。結果顯示N-乙醯半胱胺酸的保護劑量的範圍很窄。甚至高劑量N-乙醯半胱胺酸會有抑制細胞生長的表現,這個現象暗示了N-乙醯半胱胺酸用來保護顯影劑腎病變時,我們需要謹慎的調整劑量以免反而造成負面的影響。
URI: http://hdl.handle.net/11455/20185
其他識別: U0005-2308201201244700
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.