Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2018
DC FieldValueLanguage
dc.contributor徐善慧zh_TW
dc.contributor張憲彰zh_TW
dc.contributor蔡肇基zh_TW
dc.contributor.advisor王國禎zh_TW
dc.contributor.author林晏成zh_TW
dc.contributor.authorLin, Yen-Chengen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-05T11:42:23Z-
dc.date.available2014-06-05T11:42:23Z-
dc.identifierU0005-1107200811181500zh_TW
dc.identifier.citation[1] 宋信文、梁晃千,“建立人類的身體工房—組織工程,”科學發展,362,6-11,2003。 [2] Madou, M. J., Lee, L. J., Daunert, S., Lai, S., Shih, C. H., “Design and Fabrication of CD-like Microfluidic Platforms for Diagnostics: Microfluidic Functions,” Biomedical Microdevices, 3(3), 245-254, 2003. [3] Martin, R. S., Gawron, A. J., Lunte, S. M., Henry, C. S., “Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips,” Anal. Chem., 72, 3196-3202, 2000. [4] Jiang, G., Attiya, S., Ocvirk, G., Lee, W. E., Harrison, D. J., “Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis,” Biosensors and Bioelectronics, 14(10-11), 861-869, 2000. [5] Polla, D. L., Krulevitch, P., Wang, A., Smith, G., Diaz, J., Mantell, S., Zhou, J., Zurn, S., Nam, Y., Cao, L., Hamilton, J., Fuller, C., “Gascoyne P. MEMS–based diagnostic Microsystems. Proceeding of the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies,” Medicine & Biology, 41-44, 2000. [6] Alvarez, M., Calle, A., Tamayo, J., Lechuga, L. M., Abad, A., “Montoya A. Development of nanomechanical biosensors for detection of the pesticide DDT,” Biosensors and Bioelectronics, 18(5-6), 649-653, 2003. [7] Fidkowski, C., Kaazempur-Mofrad, M., Borenstein, J., Vacanti, J. P., Langer, R., Wang, Y., “Endothelialized Microvasculature Based on a Biodegradable Elastomer,” Tissue Engineering, 11(1/2), 302-309, 2005. [8] Wang, G. J., Hsu, Y.F., Hsu, S. H., Horng, R. H., “JSR Photolithography Based Microvascular Fabrication and Cell Seeding,” Biomedical Microdevices, 8(1), 17-28, 2006. [9] Luis, A. L., Rodrigues, J. M., Amado, S., Veloso, A. P., Armada-Da-Silva, P. A., Raimondo, S., Fregnan, F., Ferreira, A. J., Lopes, M. A., Santos, J. D., Geuna, S., Varejao, A. S., Mauricio, A. C., Microsurgery, 27, 125–137, 2007. [10] 潘勁屹,“聚己內酯表面活化與表面奈米化對細胞生長之研究,”國立雲林大學化學工程系研究所碩士論文,2003。 [11] Sonaje, K., Italia, J. L., Sharma, G., Bhardwaj, V., Tikoo, K., Kumar, M. N, Pharmaceutical Research, 24, 2007. [12] Mittal, G., Sahana, D. K., Bhardwaj, V., Kumar, M. N., J Control Release, 77-85, 2007. [13] Park, G. E., Park, K., Webster, T. J., ”NaOH-Treated PLGA Scaffolds Allow for GreaterArticular Chondrocyte Functions,” Bioengineering, 30, 148-149, 2004. [14] Miller, D.C., Thapa, A., Haberstroh, K.M., Webster, T. J., ” Enhanced Functions of Vascular and Bladder Cells on Poly-Lactic-Co-Glycolic Acid PolymersWith Nanostructured Surfaces,” IEEE transactions on nanobioscience, 1, 2, 2002. [15] Derick, C. M., Thapa, A., Haberstroh, K. M., Webster, T. J., ”Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structuredsurface features,” Biomaterials, 25, 53-61, 2004. [16] Wan, Y., Qu, X., Lu, J., Zhu, C., Wan, L., Yang, J., Bei, J., Wang, S., “Characterization of surface property of poly (lactide-co-glycolide) after oxygen plasma treatment, ” Biomaterials, 25, 4777-4783, 2004. [17] Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., Detmar, M., Vacanti, J.P., “Endothelialized Networks with a Vascular Geometry in Microfabricated Poly (dimethyl siloxane),” Biomedical Microdevices, 6, 269-278, 2004. [18] Borenstein, J., Terai, H., King, K. R., Weinberg, E. J., Vacanti, J. P., “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices, 4, 167-175, 2002. [19] Fidkowski, C., Kaazempur-Mofrad, M., Borenstein, J., Vacanti, J. P., Langer, R., Wang, Y., “Endothelialized Microvasculature Based on a Biodegradable Elastomer,” Tissue Engineering, 11, 302-309, 2005. [20] Yang, L. J., Chen, Y. T., Kang, S. W., Wang, Y. C., “Fabrication of SU-8 embedded microchannels with circular cross-section,” International Journal of Machine Tools & Manufacture, 44, 1109-1114, 2004. [21] Yi, Y., Kang, J. H., Park, J. K., “Moldless electroplating for cylindrical microchannel fabrication,” Electrochemistry Communications, 7, 913-917, 2005. [22] Alvaro, M., Cynthia, B., Aaron, J. F., George, M., Shuvo, R., “Analysis of Connective Tissue Progenitor Cell Behavior on Polydimethylsiloxane Smooth and Channel Micro-Textures,” Biomedical Microdevices, 4, 267-275, 2002. [23] http://www.bio-invigor.com/big5/product/Biodegradable%20polymers%20Introduction-big5.pdf [24] 黃博偉,“生物可分解材料市場與應用趨勢,” ITIS專欄 4,2004。 [25] Vozzi, G., Flaim, C., Ahluwalia, A., Bhatia, S., “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials, 24, 2355-2540, 2003. [26] Wang, G. J., Hsueh, C. C., Hsu, S. H., Hung, H. S., “Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography,” J. Micromech. Microeng., 17, 2000-2005, 2007. [27] Shevkoplyas, S. S., Yoshida, T., Gifford, S. C. and Bitensky, M. W., Lab on a chip, 6, 914-920, 2006. [28] Schmid-Schoenbein, G. W., Shih, Y. Y., and Chien, S., Blood, 56, 866-875, 1980. [29] Dhadwal, A., Wiggs, B., Doerschuk, C. M., and Kamm, R. D., J Appl Physiol, 83, 1711-1720, 1997. [30] Huang, Y., Doerschuk, C. M., and Kamm, R. D., J Appl Physiol, 90, 545-564, 2001. [31] Burrowes, K. S., Tawhai, M. H., and Hunter, P. J., Annals of Biomedical Engineering, 32(4), 585-595, 2004. [32] Shevkoplyas, S. S., Yoshida, T., Munn, L. L., and Bitensky, M. W., “Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device,” Anal. Chem., 77, 933-937, 2005. [33] Shevkoplyas, S. S., Gifford, C., Yoshida, T., and Bitensky, M. W., “Prototype of an in vitro model of the microcirculation,” Microvascular Research, 65, 132–136, 2003. [34] Lee, W. G., Park, J., Bang, H., Chung, S., Cho, K., Chung, C., Han, D. C. and Chang, J. K., Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Kahuku, Oahu, Hawaii 12-15 May 2005. [35] http://www.getgoal.com.tw/tech/tech-3.htm [36] 朱佳仁,“工程流體力學,”科技圖書股份有限公司,2001。 [37] 林志益,“微渠道內流場之觀察與速度量測,”國立中山大學機械與機電工程學系研究所碩士論文,2004。 [38] Adrian, R. J., “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, 23, 261-304, 1991. [39] http://www.cmi.hku.hk/Ref/Glossary/Phy/az.html [40] http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookcir- cSYS.html [41] http://zh.wikipedia.org/wiki/%E8%A1%80%E7%AE%A1 [42] http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookcir- cSYS.html [43] Wang, G. J., and Hsu, Y. F., “Structure Optimization of Microvascular Scaffolds,” Biomedical Microdevices, 8(1), 51-58, 2006. [44] 蘇建彰、陳建洋等人, “轉印模仁之奈米結構製作,”機械工業雜誌,269,44-55,2005。 [45] Stark, R. W., Stalder, M. S., and Stemmer, A., “Microfluidic Etching Driven by Capillary Forces for Rapid Prototyping of Gold Structures,” Microelectronic Engineering, 67-68, 229-236, 2003. [46] Murakami, T., Kuroda, S., and Osawa, Z., “Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma:Effect of Aging Media After Plasma Treatment,” Journal of Colloid and Interface Science, 202, 37-44, 1998. [47] 林大鈞,“內皮細胞植覆於聚胺基甲酸酯人工小血管之評估,”國立中興大學化學工程學系研究所碩士論文,2001。 [48] http://web2.tmu.edu.tw/B108091005/2-2-1.htmzh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2018-
dc.description.abstractPLGA為廣泛應用之生物可降解材料之一,而具奈米結構之PLGA更是在組織工程上有極大之應用潛能。本研究利用陽極氧化鋁模(AAO)結合真空抽氣壓印法之物理方式翻模,製作不同奈米結構之PLGA支架,以牛頸動脈內皮細胞之生長比較不同奈米結構對於細胞生長與貼附的影響。將PLGA溶液澆鑄於陽極氧化鋁模(AAO)上,經過1-2小時使得表面凝固;再放入真空烘箱經由抽氣使得PLGA半凝固態之PLGA材料能擠壓進入奈米孔洞中,形成柱狀奈米結構,奈米結構之尺寸可由抽氣時間加以控制;接著,將抽氣後的PLGA試片浸泡於磷酸溶液中去除氧化鋁,或直接脫膜,即可得到奈米結構PLGA支架,細胞貼附測試結果,可發現奈米結構PLGA支架有較好之細胞貼附性。本研究所提出之新方法除製程簡單外,更可藉由陽極氧化鋁模之製作控制奈米結構之圖案,使得奈米結構對細胞生長之影響之觀測更易於進行。因此本研究將人工微血管支架與奈米結構結合,以黃光微影技術製作JSR光阻母模,配合光阻熱熔法形成半圓形母模結構,再濺鍍金屬鋁薄膜於母模表面,經過陽極處理於表面生成奈米孔洞,再以一次翻模方式製作以PLGA為基材之半圓形微管道結構,最後以ICP接合形成具圓形截面之PLGA微血管道支架。此製程步驟簡單,並可製作出良好精度之微管道結構。在細胞培養方面,因PLGA膨潤無法觀測,於是本研究使用螢光染色方法觀測管道內細胞,PLGA具良好之生物相容性且由類動態培養有良好之培養機制,因此細胞於PLGA微管道內能有很好之貼附生長情形。zh_TW
dc.description.tableofcontents致謝 ...................................I 摘要 ...................................II ABSTRACT ...................................IV 目錄 ...................................VI 圖目錄 ...................................IX 第一章 緒論 1 1.1 研究動機與目標 1 1.2 論文大綱 13 第二章 理論與研究方法 15 2.1 人工微血管 15 2.1.1 血管流分析 15 2.1.2 人工微血管道之設計 20 2.2 流體運動模擬 22 2.2.1 COMSOL模擬步驟 23 2.3.2 模擬結果與討論 23 第三章 PLGA之奈米結構圓型微血管道支架製作 27 3.1. 奈米結構PLGA支架製程規劃 27 3.1.1 材料 28 3.1.2 以真空抽氣法轉印奈米結構 36 3.2. 具奈米結構人工微血管支架製作 38 3.2.1 JSR光阻母模製作 39 3.2.2 具表面奈米結構之PLGA微管道製作 43 第四章 細胞培養 47 4.1 奈米結構PLGA支架之細胞培養 47 4.1.1 實驗規劃 47 4.1.2 實驗儀器與使用藥品 47 4.1.3 奈米結構對細胞增生之測試 48 4.1.4 奈米結構對細胞增生之影響 50 4.2 人工微血管之細胞培養 52 4.2.1 細胞植覆實驗 53 4.2.2 細胞培養之染菌情形 54 4.2.3 PLGA微血管支架細胞培養 54 第五章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 57 參考文獻 58 附錄A 紅血球檢測晶片設計 62 A.1微血管道阻塞模擬 62 附錄B 血球晶片製作 66 B.1 製程規劃 66 B.2 血球晶片製作 67 B.3 不同流道製作 79 附錄C 血液注入測試 83 C.1 檢測方式 83 C.2 紅血球檢測 85zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.subjectnanoen_US
dc.subject奈米zh_TW
dc.subjectbiodegradableen_US
dc.subjectscaffolden_US
dc.subject生物可降解zh_TW
dc.subject支架zh_TW
dc.title製作表面奈米結構之生物可降解人工微血管支架zh_TW
dc.titleFabrication of Biodegradable Microvessel Scaffold with Nano Patterned inner Wallen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.