Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20193
標題: 利用核磁共振法分析藥物與基因對肺癌細胞代謝體學之影響
The metabolomics analysis of drug response and gene expression in lung cancer cells by using NMR approach
作者: 青育筠
Ching, Yu-Yun
關鍵字: 太平洋紫杉醇;Paclitaxel;代謝體學;HLJ1;Metabolomics;HLJ1
出版社: 生物醫學研究所
引用: 1. Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Archives of Pathology & Laboratory Medicine. 2012;136. 2. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clinics in Chest Medicine. 2011;32:605-44. 3. McErlean A, Ginsberg MS. Epidemiology of lung cancer. Seminars in Roentgenology 2011;46:173-7. 4. Bilello KS, Murin S, Matthay RA. Epidemiology, etiology, and prevention of lung cancer. Clinics in Chest Medicine. 2002;23:1-25. 5. Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nature Genetics 2012;44:1330-5. 6. Fidler IJ. The pathogenesis of cancer metastasis the ''seed and soil'' hypothesis revisited. Nature Reviews Cancer. 2002 ; 3(6):453-8 7. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559-64. 8. Collins LG, Haines C, Perkel R, Enck RE. Lung cancer: diagnosis and management. American Family Physician. 2007 ;75(1):56-63. 9. Hoffman PC, Mauer AM, Vokes EE. Lung cancer. The Lancet. 2000; 355(9202):479-85 10. Pao W. New approaches to targeted therapy in lung cancer. Annals of The American Thoracic Society. 2012;9:72-3. 11. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncology. 2011;12(2):175-80 12. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nature Reviews Molecular Cell Biology 2004;5:781-91. 13. Jego G, Hazoume A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Letters 2010. 14. Lanneau D, Wettstein G, Bonniaud P, Garrido C. Heat shock proteins: cell protection through protein through Protein Triage. The Scientific World Journal. 2010;10:1543-52. 15. Mitra A, Shevde LA, Samant RS. Multi-faceted role of HSP40 in cancer. Clinical & Experimental Metastasis 2009; 26: 559-67. 16. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones. 2009;14:105-11. 17. Neckers L, Ivy SP. Heat shock protein 90. Current Opinion in Oncology. 2003;15:419-24. 18. Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO Journal 2006; 25: 2519-28. 19. Barnes JA, Dix DJ, Collins BW, Luft C, Allen JW. Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress & Chaperones 2001;6:316-25. 20. Kelley WL, Georgopoulos C. Chaperones and protein folding. Current Opinion in Cell Biology. 1992;4:984-91. 21. Lindquist S, Craig EA. The Heat-Shock Proteins. Annual Review of Genetics. 1988;22:631-77. 22. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, et al. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Research 2007;67:2932-7. 23. Shimamura T, Li D, Ji H, Haringsma HJ, Liniker E, Borgman CL, et al. Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Research 2008;68:5827-38. 24. Concannon C, Gorman A, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis : An International Journal on Programmed Cell Death 2003;8:61-70. 25. Bausero MA, Page DT, Osinaga E, Asea A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biology. 2004;25:243-51. 26. Schwartz B, Shoseyov O, Melnikova VO, McCarty M, Leslie M, Roiz L, et al. ACTIBIND, a T2 RNase, competes with angiogenin and inhibits human melanoma growth, angiogenesis, and metastasis. Cancer Research. 2007;67:5258-66. 27. Wang XY, Li Y, Manjili MH, Repasky EA, Pardoll DM, Subjeck JR. Hsp110 over-expression increases the immunogenicity of the murine CT26 colon tumor. Cancer Immunology, Immunotherapy : CII 2002;51:311-9. 28. Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Letters. 2011;312:129-42. 29. Ohtsuka K. Cloning of a Cdna for Heat-Shock Protein-Hsp40, a Human Homolog of Bacterial Dnaj. Biochemical and Biophysical Research Communications. 1993;197:235-40. 30. Chen JJW, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Research 2001;61:5223-30. 31. Tsai MF, Wang CC, Chang GC, Chen CY, Chen HY, Cheng CL, et al. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. Journal of The National Cancer Institute. 2006;98:825-38. 32. Wang CC, Tsai MF, Hong TM, Chang GC, Chen CY, Yang WM, et al. The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 2005;24:4081-93. 33. Wang CC, Tsai MF, Dai TH, Hong TM, Chan WK, Chen JJ, et al. Synergistic activation of the tumor suppressor, HLJ1, by the transcription factors YY1 and activator protein 1. Cancer Research 2007;67:4816-26. 34. Chen CH, Lin H, Chuang SM, Lin SY, Chen JJ. Acidic stress facilitates tyrosine phosphorylation of HLJ1 to associate with actin cytoskeleton in lung cancer cells. Experimental Cell Research 2010; 316: 2910-21. 35. Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, Su SF, et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Research 2008;68:7428-38. 36. Lin SY, Hsueh CM, Yu SL, Su CC, Shum WY, Yeh KC, et al. HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Research 2010;38:6148-58. 37. Chang TP, Yu SL, Lin SY, Hsiao YJ, Chang GC, Yang PC, et al. Tumor suppressor HLJ1 binds and functionally alters nucleophosmin via activating enhancer binding protein 2alpha complex formation. Cancer Research 2010;70:1656-67. 38. Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Current Pharmaceutical Design 2010;16:3-10. 39. Page R, Takimoto C. Principles of chemotherapy; 2003. 40. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665-7. 41. Ganguly A, Yang H, Cabral F. Paclitaxel-dependent cell lines reveal a novel drug activity. Molecular Cancer Therapeutics 2010;9:2914-23. 42. Wani MC, Taylor HL, Wall ME, Coggon P, Mcphail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society. 1971; 93(9):2325-7. 43. Rowinsky EK, Wright M, Monsarrat B, Donehower RC. Clinical pharmacology and metabolism of Taxol (paclitaxel): update 1993. Annals of Oncology. 1994;5 Suppl 6:S7-16. 44. Pusztai L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Annals of Oncology. 2007;18 Suppl 12:xii15-20. 45. Monzo M, Rosell R, Sanchez JJ, Lee JS, O''Brate A, Gonzalez-Larriba JL, et al. Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. Journal of Clinical Oncology. 1999;17:1786-93. 46. Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics 2008;8:617-33. 47. Abdi H, Williams JJ. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2:433-59. 48. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology 2008;48:653-83. 49. Ng DJY, Pasikanti KK, Chan ECY. Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites. Metabolomics 2011. 50. Liu CC, Lin CC, Chen WS, Chen HY, Chang PC, Chen JJ, et al. CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Research. 2006;34:W571-7. 51. Tsai MF, Wang CC, Chang GC, Chen CY, Chen HY, Cheng CL, et al. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. Journal of the National Cancer Institute 2006;98:825-38. 52. Ramirez JL, Rosell R, Taron M, Sanchez-Ronco M, Alberola V, de Las Penas R, et al. 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. Journal of Clinical Oncology 2005;23:9105-12. 53. Le XF, Bast RCJ. Src family kinases and paclitaxel sensitivity. Cancer Biology & Therapy 2011;12:260-9. 54. Hori S, Nishiumi S, Kobayashi K, Shinohara M, Hatakeyama Y, Kotani Y, et al. A metabolomic approach to lung cancer. Lung Cancer. 2011;74:284-92. 55. Gottschalk M, Ivanova G, Collins DM, Eustace A, O''Connor R, Brougham DF. Metabolomic studies of human lung carcinoma cell lines using in vitro (1)H NMR of whole cells and cellular extracts. NMR in Biomedicine. 2008 ; 21:809-19. 56. Yu C. (2003) . NMR Applications in Structural Biology. 91-112. 57. Waun Ki, Anne S, Lung Carcinoma. 2008 (http://www.merckmanuals.com/ professional/pulmonarydisorders/tumors of the lungs/lung carcinoma.html #v923769) 58. Bruce A, Elizabeth Chabner Thompson. Modalities of Cancer Therapy. 2009 (http://www.merckmanuals.com/professional/hematology and oncology/principles of cancer therapy/modalities of cancer therapy.html) 59. Bruce A, Elizabeth Chabner Thompson. Overview of Cancer Therapy. 2009 (http://www.merckmanuals.com/professional/hematology and oncology/ principles of cancer therapy/overview of cancer therapy.html)
摘要: 
Lung cancer is the most common cause of cancer death worldwide, and metastasis is the major cause leading to mortality for cancer patients. Our previous reports had demonstrated that HLJ1 is a tumor suppressor and overexpression of HLJ1 can suppress cancer cell growth, invasion and migration. HLJ1 expression was also associated with the improved clinical outcome of NSCLC patients. However, the role of HLJ1 in lung cancer treatment and drug response is still unclear. In addition, a previous microarray analysis in our laboratory showed that silence of HLJ1 may affect metabolic pathways. There, in this study, we aim to investigate the effect of HLJ1 expression on chemotherapeutic drug resistance and the metabolomics analysis of drug response and gene expression in lung cancer cells by using NMR approach. The results indicated that the highly invasive and low HLJ1-expressing lung cancer CL1-5 cells are more sensitive to chemotherapeutic drugs treatment, including doxorubicin, vinorelbine, docetaxel, and paclitaxel, than the low invasive CL1-0 cells with high HLJ1 expression. Furthermore, the HLJ1-silenced stable lung cancer cell clones were established by shRNA approach and subjected to evaluate the drug response to the above four drugs. The results showed that the drug response to paclitaxel is most significant (IC50, from 0.008 μM down to 0.0045 μM). In addition, we found that paclitaxel treatment doesn’t alter the subcellular localization of HLJ1 but can reduce HLJ1 phosphorylation a little. Furthermore, NMR analyses were conducted to obtain the metabolomics profiling of HLJ1-silenced cell lysates and cultured medium. The principal component analysis showed that both the HLJ1 silence and paclitaxel treatment can change the metabolite profile in cells. Our data also indicated the the effect of paclitaxel on HLJ1-silenced cell is more significant than on CL1-0 and scrambled control. In conclusion, silencing HLJ1 increaes the drug sensitivity of lung cancer cell to paclitaxel, and drug treatment and gene expression change may also affect the metabolome of cancer cells.

在癌症中,肺癌的發生率和死亡率是相當高的,而癌症轉移是造成癌症病患死亡的原因。先前的研究指出HLJ1是腫瘤抑制基因,當大量表現HLJ1會抑制癌細胞生長、侵襲和移動能力,且其表現也與病患的癌症復發和存活率相關。然而,HLJ1在肺癌治療和藥物反應過程中的角色仍然不清楚。此外,實驗室先前的微陣列晶片結果也顯示,靜默HLJ1可能會影響一部分的代謝路徑。因此,本研究的主要目的是探討癌細胞中的HLJ1表現量與其對化療藥物反應之間的關聯;此外,也將藉由代謝體學的技術探討HLJ1與藥物對細胞代謝產物的影響。研究發現,肺癌細胞CL1-5對Doxorubicin、Vinorelbine、Docetaxel及Paclitaxel四種化療藥物敏感性比肺癌細胞CL1-0要來得高。其中,CL1-5為高侵襲且低HLJ1表現的細胞株,而CL1-0為低侵襲而高HLJ1表現的細胞株。進一步,我們建立靜默HLJ1的肺癌細胞株,並利用上述四種不同的抗癌藥物去處理該肺癌細胞。結果顯示,靜默HLJ1後,肺癌細胞對Paclitaxel的藥物反應最為顯著,IC50從0.008μM降至0.0045μM。此外,研究結果也顯示Paclitaxel對HLJ1在細胞內的分佈無顯著的影響,但可略為減少HLJ1蛋白的磷酸化。利用NMR分析肺癌細胞萃取液和培養液之氫譜,並以主成分分析法歸類其結果。研究發現,在以細胞培養液為分析樣品的情況下,HLJ1表現量及Paclitaxel處理都會造成代謝產物氫譜的差異;當以細胞萃取液為分析樣品時,發現靜默HLJ1會使Paclitaxel影響代謝產物差異更加顯著。總結,靜默HLJ1會使肺癌細胞對化療藥物Paclitaxel更加敏感,且Paclitaxel和HLJ1的表現都會影響肺癌細胞代謝物的改變。
URI: http://hdl.handle.net/11455/20193
其他識別: U0005-0702201322394900
Appears in Collections:生物醫學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.