Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2021
標題: 以導電高分子-聚苯胺製作整合型微氨氣感測器
Micro integrated ammonia sensor with conductive polymers-polyaniline and readout circuit
作者: 詹熾樺
Chan, Chih-Hua
關鍵字: polyaniline;聚苯胺;ammonia sensor;conductive polymer;ammonium persulfate;readout circuit;氨氣感測器;導電高分子;過硫酸銨;積體電路
出版社: 機械工程學系所
引用: [1]陳一誠,劉旭禎,“一氧化碳氣體感測技術”,工業材料雜誌,第227期 (1995 ) 69-80。 [2]http://www.pcc.vghtpe.gov.tw/old/docms/91013.htm [3]T. Zhang, Y. Shen, R. Zhang, and X. Liu, “Ammonia-sensing characteristics of Pt-doped CdSnO3 semiconducting ceramic sensor,” Materials Letters, 27 (1996) 161-164. [4]J. W. Gardner, M. Vidic, P. Ingleby, A. C. Pike, J. E. Brignell, P. Scivier, P. N. Bartlett, A. J. Duke, and J. M. Elliott, “Response of a poly(pyrrole) resistive micro-bridge to ethanol vapour,” Sensors and Actuators B, 48 (1998) 289-295. [5]M. Aslam, and V. A. Chaudhary, I. S. Mulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar, and K. Vijayamohanan, “A highly selective ammonia gas sensor using surface-ruthenated zinc oxide,” Sensors and Actuators A, 75 (1999) 162-167. [6]R. P. Gupta, Z. Gergintschew, D. Schipanski, and P. D. Vyas, “YBCO-FET room temperature ammonia sensor,” Sensors and Actuators B, 63 (2000) 35-41. [7]A. Teeramongkonrasmee, and M. Sriyudthsak, “Methanol and ammonia sensing characteristics of sol-gel derived thin film gas sensor,” Sensors and Actuators B, 66 (2000) 256-259. [8]E. Liobet, G. Molas, P. Molinàs, J. Calderer, X. Vilanova, J. Brezmes, J. E. Sueiras, and X. Correig, “Fabrication of Highly Selective Tungsten Oxide Ammonia Sensors,” Journal of the Electrochemical Society, 147 (2000) 776-779. [9]J. A. Covington, J. W. Gardner, D. Briand, and N. F. de Rooij, “A polymer gate FET sensor array for detecting organic vapours,” Sensors and Actuators B, 77 (2001) 155-162. [10]I. Jiménez, A. M. Vilà, A. C. Calveras, and J. R. Morante, “Gas-Sensing Properties of Catalytically Modified WO3 With Copper and Vanadium for NH3 Detection,” IEEE Sensors Journal, 5 (2005) 385-391. [11]S. Sen, K. P. Muthe, N. Joshi, S. C. Gadkari, S. K. Gupta, Jagannath, M. Roy , S. K. Deshpande, and J. V. Yakhmi, “Room temperature operating ammonia sensor based on tellurium thin films,” Sensors and Actuators B, 98 (2004) 154-159. [12]E. J. Connolly, B. Timmer, H. T. M. Pham, J. Groeneweg, P. M. Sarro, W. Olthuis, and P. J. French, “A porous SiC ammonia sensor,” Sensors and Actuators B, 109 (2005) 44-46. [13]P. Guo, and H. Pan, “Selectivity of Ti-doped In2O3 ceramicsas an ammonia sensor,” Sensors and Actuators B, 114 (2006) 762–767. [14]A. Og. Dikovska, P. A. Atanasov, A. Ts. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Applied Surface Science, 254 (2007) 1087-1090. [15]B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. K. Suh, “Tio2 thin film gas sensor for monitoring ammonia,” Materials Characterization, 58 (2007) 680-684. [16]A. Lassesson, M. Schulze, J. van Lith, and S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology, 19 (2008) 1-6. [17]R. Emirkhanian, M. Salvia, J. Ferreira, N. Jaffrezic, L. Chazeau, and A. Mazzoldi, “Characterisation of thermal relaxations of polyaniline fibers by dynamic mechanical thermal analysis,” Materials Science and Engineering C, 26 (2006) 227-231. [18]Z. F. Li, E. T. Kang, K. G. Neoh, and K. L. Tan, “Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films,” Synthetic Metals, 87 (1997) 45-52. [19]R. P. McCall, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, “Anisotropic optical properties of an oriented-emeraldine-base polymer and an emeraldine-hydrochloride-salt polymer,” Physical Review B, 50 (1994) 5094-5100. [20]T. Hjertberg, W. R. Salaneck, I. Lundstrom, N. L. D. Somasiri, and A. G. Macdiarmid, “A 13 C CP-MAS NMR I nvestigation of Polyaniline,” Polymer Letters Edition, 23 (1985) 503-508. [21]S. M. Sze, Semiconductor Sensors , John Wiley and Sons, (1994) 388-396. [22]陳富松,“含三氧化鎢薄膜和感測電路之整合型微濕度感測器”,國立中興大學機械研究所碩士論文,2006。 [23]莊達人,VLSI 製造技術,高立圖書有限公司,2000。 [24]M. Campos, L. O. S. BulhÕes, and C. A. Lindino, “Gas-sensitive characteristics of metalrsemiconductor polymer Schottky device,” Sensors and Actuators, 87 (2000) 67-71. [25]P. P. Sengupta, S. Barik, and B. Adhikari, “Polyaniline as a Gas-Sensor Material,” Materials and Manufacturing Processes, 21 (2006) 263-270. [26]http://www.nchu.edu.tw/~infochem/%BB%C4%BBP%C6P/Kaol.htm [27]戴銚葦,“整合積體電路的FET微壓力感測器”,國立中興大學機械研究所碩士論文,2007。 [28]Y. S. Lee, K. D. Song, J. S. Huh, W. Y. Chung, and D. D. Lee, “Fabrication of clinical gas sensor using MEMS process,” Sensors and Actuators B, 108 (2005) 292–297. [29]財團法人工業技術研究院工業安全衛生技術發展中心,“硫酸之物質安全資料表”,民國89年3月31號。 [30]財團法人工業技術研究院工業安全衛生技術發展中心,“鹽酸之物質安全資料表”,民國89年3月31號。 [31]財團法人工業技術研究院工業安全衛生技術發展中心,“硝酸之物質安全資料表”,民國89年3月31號。 [32]S. K. Dhawan, and D. C. Trivedi, “Synthesis and properties of polyaniline obtained using sulphamic acid,” Journal of Applied Electrochemistry, 22 (1992) 563-570. [33]D. C. Trivedi, and S. K. Dhawan, “Antistatic Applications of Conducting Polyaniline,” Polymers for Advanced Technologies, 4 (1993) 335-340. [34]M. Ita, Y. Uchida, and K. Matsui, “Polyaniline/Silica Hybrid Composite Gels Prepared by the Sol-Gel Process,” Journal of Sol-Gel Science and Technology, 26 (2003) 479-482. [35]S. Xing, C. Zhao, S. Jing, Y. Wu, and Z. Wang, “Morphology and gas-sensing behavior of in situ polymerized nanostructured polyaniline films,” European Polymer Journal, 42 (2006) 2730-2735. [36]Y. He, and J. Lu, “Synthesis of polyaniline nanostructures with controlled morphology by a two-phase strategy,” Reactive & Functional Polymers, 67 (2007) 476-480. [37]A. G. Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, L. D. Nanaxakkara, S. W. Wu, and S. I. Yaniger, “"Polyaniline": Interconversion of Metallic and Insulating Forms,” Molecular Crystals and Liquid Crystals, 121 (1985) 173-180.
摘要: 
本研究以CMOS-MEMS技術製作微氨氣感測器,所使用之感測薄膜為導電高分子-聚苯胺,並整合積體電路。此感測薄膜的特性有:(1) 在室溫的環境下對氨氣有良好的靈敏度;(2) 成本低廉且製作簡便;(3) 良好的空氣穩定性。
感測器的後製程處理主要將金屬犧牲層利用濕式蝕刻將其移除,使感測器顯露出感測區域,再將聚苯胺(polyaniline,PANI)滴覆在感測區域上,藉由溫控系統使薄膜成形。聚苯胺是利用過硫酸銨、鹽酸和苯胺化學氧化聚合而成,當聚苯胺薄膜暴露在氨氣的環境下,氨氣會吸附在聚苯胺上,使薄膜內部離子濃度會產生變化,造成聚苯胺感測薄膜電阻值上升。
本研究之氨氣感測器在室溫環境下量測時,所得之初始電阻值為22.75kΩ;當氨氣濃度上升至50ppm時,電阻值上升至25.53kΩ。利用感測結構搭配運算放大器,將感測薄膜電阻變化轉換為輸出電壓;當輸入為3V時,在室溫環境下,氨氣濃度從0增加至50ppm,所測得電壓變化為2.4904V上升至2.5339V,總變化為43.5mv,靈敏度為0.87mV/ppm。

This study presents a micro ammonia sensor integrated with a readout circuit, which is manufactured by the commercial CMOS process and a post-process. Polyaniline (PANI) is adopted as the sensing film of the ammonia sensor. The advantages of the ammonia sensor are high sensitivity at room temperature, low cost and good stability in the air. The ammonia sensor needs a post-process to remove the sacrificial layer, and to expose the sensing region. The polyaniline film is coated on the sensing region, and then the film is cured. Polyaniline is synthesized by oxidative polymerization of aniline using ammonium persulfate and HCl. When the polyaniline film is exposured to ammonia gas, the film absorbs ammonia gas leading to change the concentration of the ions. This reaction leads to disappearance of charge carriers and an increase in electrical resistance. The experiments show that the ammonia sensor has an initial resistance of 22.75 kΩ. When the concentration of ammonia increases to 50 ppm, the resistance of the ammonia sensor rises to 25.53 kΩ. The sensitivity of the micro ammonia sensor is 0.87mV/ppm in ammonia concentration of 0-50 ppm at room temperature.
URI: http://hdl.handle.net/11455/2021
其他識別: U0005-1107200815264900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.